18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adjuvant ArtinM favored the host immunity against Cryptococcus gattii infection in C57BL/6 mice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 15 Jan 2024, Accepted 22 May 2024, Published online: 28 Jun 2024

References

  • Bongomin F, Gago S, Oladele R, et al. Global and multi-national prevalence of fungal diseases – estimate precision. J Fungi. 2017;3(4):57. doi:10.3390/jof3040057
  • Rodrigues ML. Funding and innovation in diseases of neglected populations: the paradox of cryptococcal meningitis. PLoS Negl Trop Dis. 2016;10(3):e0004429. doi:10.1371/journal.pntd.0004429
  • Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance [Review]. FrontFungal Biol. 2023; 4:1241539. doi:10.3389/ffunb.2023.1241539
  • Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–881. doi:10.1016/S1473-3099(17)30243-8
  • Hoang LM, Maguire JA, Doyle P, et al. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997–2002): epidemiology, microbiology and histopathology. J Med Microbiol. 2004;53(Pt 9):935–940. doi:10.1099/jmm.0.05427-0
  • Okubo Y, Wakayama M, Ohno H, et al. Histopathological study of murine pulmonary cryptococcosis induced by Cryptococcus gattii and Cryptococcus neoformans. Jpn J Infect Dis. 2013;66(3):216–221. doi:10.7883/yoken.66.216
  • Dixit A, Carroll SF, Qureshi ST. Cryptococcus gattii: An Emerging Cause of Fungal Disease in North America. Interdiscip Perspect Infect Dis. 2009;2009:840452. doi:10.1155/2009/840452
  • Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):fov106. doi:10.1093/femsyr/fov106
  • Schoffelen T, Illnait-Zaragozi MT, Joosten LA, et al. Cryptococcus gattii induces a cytokine pattern that is distinct from other cryptococcal species. PLOS ONE. 2013;8(1):e55579. doi:10.1371/journal.pone.0055579
  • Angkasekwinai P, Sringkarin N, Supasorn O, et al. Cryptococcus gattii infection dampens Th1 and Th17 responses by attenuating dendritic cell function and pulmonary chemokine expression in the immunocompetent hosts. Infect Immun. 2014;82(9):3880–3890. doi:10.1128/IAI.01773-14
  • Huston SM, Li SS, Stack D, et al. Cryptococcus gattii is killed by dendritic cells, but evades adaptive immunity by failing to induce dendritic cell maturation. J Immunol. 2013;191(1):249–261. doi:10.4049/jimmunol.1202707
  • Lee Y, Puumala E, Robbins N, et al. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121(6):3390–3411. doi:10.1021/acs.chemrev.0c00199
  • Chang Y-L, Yu S-J, Heitman J, et al. New facets of antifungal therapy. Virulence. 2017;8(2):222–236. doi:10.1080/21505594.2016.1257457
  • Enoch DA, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol. 2006;55(Pt 7):809–818. doi:10.1099/jmm.0.46548-0
  • Monk BC, Cannon RD. Genomic pathways to antifungal discovery. Curr Drug Targets Infect Disord. 2002;2(4):309–329. doi:10.2174/1568005023342344
  • Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–288. doi:10.1038/nri2939
  • Rinaldi MG. Controversies in medical mycology. Dermatology. 1997;194(Suppl. 1):45–47. doi:10.1159/000246186
  • Hamad M. Antifungal immunotherapy and immunomodulation: a double-hitter approach to deal with invasive fungal infections. Scand J Immunol. 2008;67(6):533–543. doi:10.1111/j.1365-3083.2008.02101.x
  • B P, AJD L, RC M, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. J Appl Microbiol. 2015;118(4):839–850. doi:10.1111/jam.12746
  • Shikanai-Yasuda MA, Telles Filho Fde Q, Mendes RP, et al. [Guidelines in paracoccidioidomycosis]. Rev Soc Bras Med Trop. 2006;39(3):297–310. doi:10.1590/S0037-86822006000300017
  • Chaturvedi AK, Hameed RS, Wozniak KL, et al. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice. PLOS ONE. 2014;9(8):e104316. doi:10.1371/journal.pone.0104316
  • Murphy JW, Schafer F, Casadevall A, et al. Antigen-induced protective and nonprotective cell-mediated immune components against Cryptococcus neoformans [Article]. Infect Immun. 1998;66(6):2632–2639. doi:10.1128/IAI.66.6.2632-2639.1998
  • Ueno K, Kinjo Y, Okubo Y, et al. Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii. Infect Immun. 2015;83(4):1577–1586. doi:10.1128/IAI.02827-14
  • Ueno K, Urai M, Takatsuka S, et al. Immunization with antigen-pulsed dendritic cells against highly virulent Cryptococcus gattii infection: analysis of cytokine-producing T cells. Methods Mol Biol. 2017;1625:327–339. doi:10.1007/978-1-4939-7104-6_22
  • Sam QH, Yew WS, Seneviratne CJ, et al. Immunomodulation as therapy for fungal infection: are we closer? Front Microbiol. 2018;9:1612. doi:10.3389/fmicb.2018.01612
  • Oliveira-Brito PK, de Campos GY, Guimarães JG, et al. Adjuvant curdlan contributes to immunization against Cryptococcus gattii infection in a mouse strain-specific manner. Vaccines. 2022;10(4):620. doi:10.3390/vaccines10040620
  • da Silva TA, de Souza MA, Cecílio NT, et al. Activation of spleen cells by ArtinM may account for its immunomodulatory properties. Cell Tissue Res. 2014;357(3):719–730. doi:10.1007/s00441-014-1879-8
  • da Silva TA, Mariano VS, Sardinha-Silva A, et al. IL-17 induction by ArtinM is due to stimulation of IL-23 and IL-1 release and/or interaction with CD3 in CD4+ T cells. PLOS ONE. 2016;11(2):e0149721. doi:10.1371/journal.pone.0149721
  • Mariano VS, Zorzetto-Fernandes AL, da Silva TA, et al. Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity. PLOS ONE. 2014;9(6):e98512. doi:10.1371/journal.pone.0098512
  • Alegre AC, Oliveira AF, Dos Reis Almeida FB, et al. Recombinant paracoccin reproduces the biological properties of the native protein and induces protective Th1 immunity against Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis. 2014;8(4):e2788. doi:10.1371/journal.pntd.0002788
  • Alegre-Maller ACP, Mendonça FC, da Silva TA, et al. Therapeutic Administration of Recombinant Paracoccin Confers Protection against Paracoccidioides brasiliensis Infection: Involvement of TLRs. PLoS Neglected Tropical Diseases. 2014;8(12):e3317. doi:10.1371/journal.pntd.0003317
  • Almeida F, Wolf JM, da Silva TA, et al. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun. 2017;8(1):1968. doi:10.1038/s41467-017-02126-7
  • de Melo Cristiane Moutinho L, de Castro Maria Carolina Accioly B, de Oliveira Andresa P, et al. Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother Res. 2010;24(11):1631–1636. doi:10.1002/ptr.3156
  • Oliveira-Brito PKM, Gonçalves TE, Fernandes FF, et al. Systemic effects in naïve mice injected with immunomodulatory lectin ArtinM. PLOS ONE. 2017;12(10):e0187151. doi:10.1371/journal.pone.0187151
  • Santos-de-Oliveira R, Dias-Baruffi M, Thomaz SM, et al. A neutrophil migration-inducing lectin from Artocarpus integrifolia. J Immunol. 1994;153(4):1798–1807. doi:10.4049/jimmunol.153.4.1798
  • Liu Y, Cecilio NT, Carvalho FC, et al. Glycan microarray analysis of the carbohydrate-recognition specificity of native and recombinant forms of the lectin ArtinM. Data Brief. 2015;5:1035–1047. doi:10.1016/j.dib.2015.11.014
  • Ganiko L, Martins AR, Espreafico EM, et al. Neutrophil haptotaxis induced by the lectin KM+. Glycoconj J. 1998;15(5):527–530. doi:10.1023/A:1006999323098
  • Pereira-da-Silva G, Moreno AN, Marques F, et al. Neutrophil activation induced by the lectin KM+ involves binding to CXCR2. Biochim Biophys Acta. 2006;1760(1):86–94. doi:10.1016/j.bbagen.2005.09.011
  • Ricci-Azevedo R, Oliveira AF, Conrado MC, et al. Neutrophils contribute to the protection conferred by ArtinM against intracellular pathogens: a study on leishmania major. PLoS Negl Trop Dis. 2016;10(4):e0004609. doi:10.1371/journal.pntd.0004609
  • Moreno AN, Jamur MC, Oliver C, et al. Mast cell degranulation induced by lectins: effect on neutrophil recruitment. Int Arch Allergy Immunol. 2003;132(3):221–230. doi:10.1159/000074303
  • Barbosa-Lorenzi VC, Buranello PA, Roque-Barreira MC, et al. The lectin ArtinM binds to mast cells inducing cell activation and mediator release. Biochem Biophys Res Commun. 2011;416(3–4):318–324. doi:10.1016/j.bbrc.2011.11.033
  • Coltri KC, Oliveira LL, Pinzan CF, et al. Therapeutic administration of KM+ lectin protects mice against Paracoccidioides brasiliensis infection via interleukin-12 production in a toll-like receptor 2-dependent mechanism. Am J Pathol. 2008;173(2):423–432. doi:10.2353/ajpath.2008.080126
  • da Silva TA, Zorzetto-Fernandes ALV, Cecílio NT, et al. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Scientific Reports. 2017;7(1):7083. doi:10.1038/s41598-017-07397-0
  • da Silva TA, Oliveira-Brito PKM, de Oliveira Thomaz SM, et al. ArtinM: purification and evaluation of biological activities. Methods Mol Biol. 2020;2132:349–358. doi:10.1007/978-1-0716-0430-4_34
  • Oliveira-Brito PKM, Rezende CP, Almeida F, et al. iNOS/Arginase-1 expression in the pulmonary tissue over time during Cryptococcus gattii infection. Innate immunity. 2020;26(2):117–129. doi:10.1177/1753425919869436
  • Antachopoulos C, Walsh TJ. Immunotherapy of Cryptococcus infections. Clin Microbiol Infect. 2012;18(2):126–133. doi:10.1111/j.1469-0691.2011.03741.x
  • Jarvis JN, Meintjes G, Rebe K, et al. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS. 2012;26(9):1105–1113. doi:10.1097/QAD.0b013e3283536a93
  • Iyer KR, Revie NM, Fu C, et al. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454–466. doi:10.1038/s41579-021-00511-0
  • Kullberg BJ, van de Veerdonk F, Netea MG. Immunotherapy: a potential adjunctive treatment for fungal infection. Curr Opin Infect Dis. 2014;27(6):511–516. doi:10.1097/QCO.0000000000000105
  • Caballero Van Dyke MC, Wormley FL. A call to arms: quest for a cryptococcal vaccine. Trends Microbiol. 2018;26(5):436–446. doi:10.1016/j.tim.2017.10.002
  • Specht CA, Lee CK, Huang H, et al. Vaccination with recombinant cryptococcus proteins in glucan particles protects mice against cryptococcosis in a manner dependent upon mouse strain and cryptococcal species. mBio. 2017;8(6):e01872–17. doi:10.1128/mBio.01872-17
  • Hester MM, Lee CK, Abraham A, et al. Protection of mice against experimental cryptococcosis using glucan particle-based vaccines containing novel recombinant antigens. Vaccine. 2020;38(3):620–626. doi:10.1016/j.vaccine.2019.10.051
  • Wang Y, Wang K, Masso-Silva JA, et al. A heat-killed Cryptococcus mutant strain induces host protection against multiple invasive mycoses in a murine vaccine model. mBio. 2019;10(6):e02145–19. doi:10.1128/mBio.02145-19
  • Basto AP, Leitao A. Targeting TLR2 for vaccine development. J Immunol Res. 2014;2014:619410. doi:10.1155/2014/619410
  • Coltri KC, Oliveira LL, Ruas LP, et al. Protection against Paracoccidioides brasiliensis infection conferred by the prophylactic administration of native and recombinant ArtinM. Med Mycol. 2010;48(6):792–799. doi:10.3109/13693780903501671
  • Custodio LA, Loyola W, Conchon-Costa I, et al. Protective effect of Artin M from extract of Artocarpus integrifolia seeds by Th1 and Th17 immune response on the course of infection by Candida albicans. Int Immunopharmacol. 2011;11(10):1510–1515. doi:10.1016/j.intimp.2011.05.005
  • Loyola W, Custodio LA, Felipe I, et al. Artin M enhances TNF-α production and phagocytosis of Candida albicans mediated by dectin-1 and mannose receptors. Inter Immunopharmacol. 2012;12(2):378–383. doi:10.1016/j.intimp.2011.12.010
  • Hu J, Qiu L, Wang X, et al. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov. 2015;10(10):1133–1144. doi:10.1517/17460441.2015.1067198
  • Li M, Zhao Y, Chen X, et al. Contribution of sex-based immunological differences to the enhanced immune response in female mice following vaccination with hepatitis B vaccine. Mol Med Rep. 2019;20(1):103–110. doi:10.3892/mmr.2019.10231
  • Zorzella-Pezavento SFG, Chiuso-Minicucci F, França TGD, et al. pVAXhsp65 vaccination primes for high IL-10 production and decreases experimental encephalomyelitis severity. J Immunol Res. 2017;2017:6257958. doi:10.1155/2017/6257958
  • Retini C, Kozel TR, Pietrella D, et al. Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect Immun. 2001;69(10):6064–6073. doi:10.1128/IAI.69.10.6064-6073.2001
  • Xu X, Liu X, Long J, et al. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLOS ONE. 2017;12(2):e0172523. doi:10.1371/journal.pone.0172523
  • Jamil K, Polyak MJ, Feehan DD, et al. Phagosomal F-actin retention by Cryptococcus gattii induces dendritic cell immunoparalysis. mBio. 2020;11(6):e01821–20. doi:10.1128/mBio.01821-20
  • Ruas LP, Carvalho FC, Roque-Barreira MC. ArtinM offers new perspectives in the development of antifungal therapy. Front Microbiol. 2012;3:218. doi:10.3389/fmicb.2012.00218
  • Toledo KA, Scwartz C, Oliveira AF, et al. Neutrophil activation induced by ArtinM: release of inflammatory mediators and enhancement of effector functions. Immunol Lett. 2009;123(1):14–20. doi:10.1016/j.imlet.2009.01.009
  • Chahud F, Ramalho LN, Ramalho FS, et al. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol. 2009;90(2):166–173. doi:10.1111/j.1365-2613.2008.00626.x
  • de Almeida Buranello PA, Moulin MR, Souza DA, et al. The lectin ArtinM induces recruitment of rat mast cells from the bone marrow to the peritoneal cavity. PLOS ONE. 2010;5(3):e9776. doi:10.1371/journal.pone.0009776

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.