2,385
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The effects of light physical activity on learning in adolescents: a systematic review

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 291-318 | Received 18 Nov 2020, Accepted 29 Oct 2021, Published online: 21 Nov 2021

References

  • (*denotes studies included in current review)
  • *Abou Khalil, G., Dore-Mazars, K., Senot, P., Wang, D. P., & Legrand, A. (2020). Is it better to sit down, stand up or walk when performing memory and arithmetic activities? Experimental Brain Research, 238(11), 2487–2496. https://doi.org/10.1007/s00221-020-05858-z
  • Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
  • Ainsworth, B. E., Haskell, W. L., Leon, A. S., Jacobs, J. D., Montoye, H. J., Sallis, J. F., & Paffenbarger, J. R. (1993). Compendium of physical activities: Classification of energy costs of human physical activities. Medicine & Science in Sports & Exercise, 25(1), 71–80. https://doi.org/10.1249/00005768-199301000-00011
  • Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., O’Brien, W. L., Bassett Jr, D. R., Schmitz, K. H., & Emplaincourt, P. O. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine & Science in Sports & Exercise, 32(Supplement), S498–S516. https://doi.org/10.1097/00005768-200009001-00009
  • *Akazawa, N., Kobayashi, N., Nakamura, Y., Kumagai, H., Choi, Y., & Maeda, S. (2019). Effect of sleep efficiency on salivary metabolite profile and cognitive function during exercise in volleyball athletes. European Journal of Applied Physiology, 119(10), 2215–2223. https://doi.org/10.1007/s00421-019-04205-7
  • Alderman, B. L., Olson, R. L., & Mattina, D. M. (2014). Cognitive function during low-intensity walking: A test of the treadmill workstation. Journal of Physical Activity and Health, 11(4), 752–758. https://doi.org/10.1123/jpah.2012-0097
  • Álvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sánchez-López, M., Martínez-Hortelano, J. A., & Martínez-Vizcaíno, V. (2017). The effect of physical activity interventions on children’s cognition and metacognition: A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(9), 729–738. https://doi.org/10.1016/j.jaac.2017.06.012
  • American College of Sports Medicine. (2018). General Principles of Exercise Prescription. In ACSM’s Guidelines For Exercise Testing and Prescription (10th ed., pp. 226–269). Lippincott Williams & Wilkins.
  • Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., Sandhu, R., & Sharma, S. (2013). Maturation of the adolescent brain. Neuropsychiatric Disease and Treatment, 9, 449–461. https://doi.org/10.2147/NDT.S39776
  • Arts, F., & Kuipers, H. (1994). The relation between power output, oxygen uptake and heart rate in male athletes. International Journal of Sports Medicine, 15(05), 228–231. https://doi.org/10.1055/s-2007-1021051
  • Au, J., Gibson, B. C., Bunarjo, K., Buschkuehl, M., & Jaeggi, S. M. (2020). Quantifying the difference between active and passive control groups in cognitive interventions using two meta-analytical approaches. Journal of Cognitive Enhancement, 4(2), 192–210. https://doi.org/10.1007/s41465-020-00164-6
  • Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421. https://doi.org/10.1097/01.psy.0000127692.23278.a9
  • Barenberg, J., Berse, T., & Dutke, S. (2011). Executive functions in learning processes: Do they benefit from physical activity? Educational Research Review, 6(3), 208–222. https://doi.org/10.1016/j.edurev.2011.04.002
  • Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plasticity, 2(2), 127–152. https://doi.org/10.3233/BPL-160040
  • Benzo, R. M., Gremaud, A. L., Jerome, M., & Carr, L. J. (2016). Learning to stand: The acceptability and feasibility of introducing standing desks into college classrooms. International Journal of Environmental Research and Public Health, 13(8), 823. https://doi.org/10.3390/ijerph13080823
  • Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327–336. https://doi.org/10.1016/j.lindif.2011.01.007
  • Biddle, S. J. H., Ciaccioni, S., Thomas, G., & Vergeer, I. (2019). Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychology of Sport and Exercise, 42, 146–155. https://doi.org/10.1016/j.psychsport.2018.08.011
  • Borg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 337–381. https://doi.org/10.1249/00005768-198205000-00012
  • *Brisswalter, J., Arcelin, R., Audiffren, M., & Delignieres, D. (1997). Influence of physical exercise on simple reaction time: Effect of physical fitness. Perceptual and Motor Skills, 85(3), 1019–1027. https://doi.org/10.2466/pms.1997.85.3.1019
  • Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566. https://doi.org/10.2165/00007256-200232090-00002
  • *Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose–response and time course effects of acute resistance exercise on executive function. Journal of Sport & Exercise Psychology, 38(4), 396–408. https://doi.org/10.1123/jsep.2016-0027
  • Buckworth, J., & Nigg, C. (2010). Physical activity, exercise, and sedentary behavior in college students. College Health, 53(1), 28–34. https://doi.org/10.3200/JACH.53.1.28-34
  • *Budde, H., Voelcker-Rehage, C., Pietrassyk-Kendziorra, S., Machado, S., Ribeiro, P., & Arafat, A. M. (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology, 35(3), 382–391. https://doi.org/10.1016/j.psyneuen.2009.07.015
  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293. https://doi.org/10.1207/S15326942DN1903_3
  • *Burgess, M., & Hokanson, J. E. (1964). Effects of increased heart rate on intellectual performance. Journal of Abnormal Psychology, 68(1), 85–91. https://doi.org/10.1037/h0042849
  • Butte, N. F., Puyau, M. R., Adolph, A. L., Vohra, F. A., & Zakeri, I. (2007). Physical activity in nonoverweight and overweight Hispanic children and adolescents. Medicine & Science in Sports & Exercise, 39(8), 1257–1266. https://doi.org/10.1249/mss.0b013e3180621fb6
  • *Byun, K., Hyodo, K., Suwabe, K., Ochi, G., Sakairi, Y., Kato, M., Dan, I., & Soya, H. (2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study. NeuroImage, 98, 336–345. https://doi.org/10.1016/j.neuroimage.2014.04.067
  • Carson, V., Ridgers, N. D., Howard, B. J., Winkler, E. A. H., Healy, G. N., Owen, N., Dunstan, D. W., & Salmon, J. (2013). Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE, 8(8), e71417. https://doi.org/10.1371/journal.pone.0071417
  • Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
  • Chastin, S. F. M., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., Hamer, M., Stamatakis, E., Sebastien, D., & Chastin, F. M. (2019). How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. British Journal of Sports Medicine, 53(6), 370–376. https://doi.org/10.1136/bjsports-2017-097563
  • Chim, H. Q., Gijselaers, H., Savelberg, H., Gerven, P. v., OudeEgbrink, M., & Groot, R. d. (2018). Light intensity physical activity in relation to learning in adolescents: A systematic review. PROSPERO: International prospective register of systematic reviews, CRD4201809.
  • Choudhury, S., Blakemore, S.-J., & Charman, T. (2006). Social cognitive development during adolescence. Social Cognitive and Affective Neuroscience, 1(3), 165–174. https://doi.org/10.1093/scan/nsl024
  • Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86(2), 189–199. https://doi.org/10.1016/j.pbb.2006.12.001
  • Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13(9), 636–650. https://doi.org/10.1038/nrn3313
  • *Cuttler, C., Connolly, C. P., LaFrance, E. M., & Lowry, T. M. (2018). Resist forgetting: Effects of aerobic and resistance exercise on prospective and retrospective memory. Sport Exercise and Performance Psychology, 7(2), 205–217. https://doi.org/10.1037/spy0000112
  • Daly-Smith, A. J., Zwolinsky, S., Mckenna, J., Tomporowski, P. D., Defeyter, M. A., & Manley, A. (2018). Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: Understanding critical design features. BMJ Open Sport & Exercise Medicine, 4, 341. https://doi.org/10.1136/bmjsem-2018-000341
  • Day, J. R., Rossiter, H. B., Coats, E. M., Skasick, A., & Whipp, B. J. (2003). The maximally attainable VO2 during exercise in humans: The peak vs. maximum issue. Journal of Applied Physiology, 95(5), 1901–1907. https://doi.org/10.1152/japplphysiol.00024.2003
  • de Houwer, J., Barnes-Holmes, D., & Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychonomic Bulletin and Review, 20(4), 631–642. https://doi.org/10.3758/s13423-013-0386-3
  • *Del Giorno, J. M., Hall, E. E., O’Leary, K. C., Bixby, W. R., & Miller, P. C. (2010). Cognitive function during acute exercise: A test of the transient hypofrontality theory. Journal of Sport & Exercise Psychology, 32(3), 312–323. https://doi.org/10.1123/jsep.32.3.312
  • Delignières, D., Brisswalter, J., & Legros, P. (1994). Influence of physical exercise on choice reaction time in sports experts: The mediating role of resource allocation. Journal of Human Movement Studies, 27(4), 173–188.
  • *Delli Paoli, A. G., Smith, A. L., & Pontifex, M. B. (2017). Does walking mitigate affective and cognitive responses to social exclusion? Journal of Sport & Exercise Psychology, 39(2), 97–108. https://doi.org/10.1123/jsep.2016-0202
  • Diamond, A. (2013). Executive functions. The Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145(1), 79–83. https://doi.org/10.1016/j.psychres.2005.07.033
  • Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53–64. https://doi.org/10.1016/j.dcn.2013.11.001
  • *Ellemberg, D., & St-Louis-Deschênes, M. (2010). The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise, 11(2), 122–126. https://doi.org/10.1016/j.psychsport.2009.09.006
  • *Endo, K., Matsukawa, K., Liang, N., Nakatsuka, C., Tsuchimochi, H., Okamura, H., & Hamaoka, T. (2013). Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. The Journal of Physiological Sciences, 63(4), 287–298. https://doi.org/10.1007/s12576-013-0267-6
  • Etnier, J. L., & Chang, Y.-K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Article in Journal of Sport & Exercise Psychology, 31, 469–483. https://doi.org/10.1123/jsep.31.4.469
  • Eysenck, M. W. (1976). Arousal, learning, and memory. Psychological Bulletin, 83(3), 389–404. https://doi.org/10.1037/0033-2909.83.3.389
  • *Finch, L., Tomiyama, A., & Ward, A. (2017). Taking a stand: The effects of standing desks on task performance and engagement. International Journal of Environmental Research and Public Health, 14(8), 939. https://doi.org/10.3390/ijerph14080939
  • Foulkes, L., & Blakemore, S. J. (2018). Studying individual differences in human adolescent brain development. Nature Neuroscience, 21(3), 315–323. https://doi.org/10.1038/s41593-018-0078-4
  • Freeze, A. (2016, January 15). First graders in Paramus, New Jersey are fidgeting less thanks to pedaling desk cycles. ABC7 New York. https://abc7ny.com/paramus-new-jersey-first-grade-pedaling-desk-cycles/1160727/#:~:text=PARAMUS%2C New Jersey (WABC),desk and pedal looks promising!
  • Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135. https://doi.org/10.1037/0096-3445.133.1.101
  • *Frodsham, K. M., Randall, N. R., Carbine, K. A., Rodeback, R. E., LeCheminant, J. D., & Larson, M. J. (2020). Does type of active workstation matter? A randomized comparison of cognitive and typing performance between rest, cycling, and treadmill active workstations. PLoS ONE, 15(8 August), e0237348. https://doi.org/10.1371/journal.pone.0237348
  • Füzéki, E., Engeroff, T., & Banzer, W. (2017). Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the national health and Nutrition examination survey (NHANES). Sports Medicine, 47(9), 1769–1793. https://doi.org/10.1007/s40279-017-0724-0
  • Giles, G. E., Brunyé, T. T., Eddy, M. D., Mahoney, C. R., Gagnon, S. A., Taylor, H. A., & Kanarek, R. B. (2014). Acute exercise increases oxygenated and deoxygenated hemoglobin in the prefrontal cortex. NeuroReport, 25(16), 1320–1325. https://doi.org/10.1097/WNR.0000000000000266
  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent IIIT. F., Herman, D. V., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
  • *Grubaugh, J., & Rhea, C. K. (2014). Gait performance is not influenced by working memory when walking at a self-selected pace. Experimental Brain Research, 232(2), 515–525. https://doi.org/10.1007/s00221-013-3759-y
  • Guthold, R., Cowan, M. J., Autenrieth, C. S., Kann, L., & Riley, L. M. (2010). Physical activity and sedentary behavior Among schoolchildren: A 34-country comparison. Journal of Pediatrics, 157(1), 43–49. https://doi.org/10.1016/j.jpeds.2010.01.019
  • Guyatt, G. H., Oxman, A. D., Schünemann, H. J., Tugwell, P., & Knottnerus, A. (2011). GRADE guidelines: A new series of articles in the Journal of Clinical epidemiology. Journal of Clinical Epidemiology, 64, 380–382. https://doi.org/10.1016/j.jclinepi.2010.09.011
  • *Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Durrant, L. H., Hall, M. S., & Kang, K. (2016). Acute effects of 30 min resistance and aerobic exercise on cognition in a high school sample. Research Quarterly for Exercise and Sport, 87(2), 214–220. https://doi.org/10.1080/02701367.2016.1146943
  • *Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Hall, M. S., & Celeste, E. (2019). Acute exercise and academic achievement in middle school students. International Journal of Environmental Research and Public Health, 16(19), 3527. https://doi.org/10.3390/ijerph16193527
  • *Hasegawa, T., Inoue, K., Tsutsue, O., & Kumashiro, M. (2001). Effects of a sit–stand schedule on a light repetitive task. International Journal of Industrial Ergonomics, 28(3–4), 219–224. https://doi.org/10.1016/S0169-8141(01)00035-X
  • Hassevoort, K. M., Khan, N. A., Hillman, C. H., & Cohen, N. J. (2016). Childhood markers of health behavior relate to hippocampal health, memory, and academic performance. Mind, Brain, and Education, 10(3), 162–170. https://doi.org/10.1111/mbe.12108
  • Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information and Computer Sciences, 44(1), 1–12. https://doi.org/10.1021/ci0342472
  • *Haynes, A. T., Frith, E., Sng, E., & Loprinzi, P. D. (2019). Experimental effects of acute exercise on episodic memory function: Considerations for the timing of exercise. Psychological Reports, 122(5), 1744–1754. https://doi.org/10.1177/0033294118786688
  • Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Verghese, J. (2011). fNIRS study of walking and walking while talking in young and old individuals. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A(8), 879–887. https://doi.org/10.1093/gerona/glr068
  • *Hötting, K., Schickert, N., Kaiser, J., Röder, B., & Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016, 6860573. https://doi.org/10.1155/2016/6860573
  • Howley, E. T. (2001). Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6), S364–S369. https://doi.org/10.1097/00005768-200106001-00005
  • *Isip, M. I. G. (2014). Effect of a standing body position during college students’ exam: Implications on cognitive test performance. Industrial Engineering and Management Systems, 13(2), 185–192. https://doi.org/10.7232/iems.2014.13.2.185
  • *Jaffery, A., Edwards, M. K., & Loprinzi, P. D. (2018). The effects of acute exercise on cognitive function: Solomon experimental design. Journal of Primary Prevention, 39(1), 37–46. https://doi.org/10.1007/s10935-017-0498-z
  • *Joyce, J., Graydon, J., McMorris, T., & Davranche, K. (2009). The time course effect of moderate intensity exercise on response execution and response inhibition. Brain and Cognition, 71(1), 14–19. https://doi.org/10.1016/J.BANDC.2009.03.004
  • Kahneman, D. (1973). Attention and effort. Prentice-Hall Inc.
  • *Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64B(3), 356–363. https://doi.org/10.1093/geronb/gbp030
  • Kaplan, S., Kaplan, R., & Sampson, J. R. (1968). Encoding and arousal factors in free recall of verbal and visual material. Psychonomic Science, 12(2), 73–74. https://doi.org/10.3758/BF03331199
  • Kleinsmith, L. J., & Kaplan, S. (1963). Paired-associate learning as a function of arousal and interpolated interval. Journal of Experimental Psychology, 65(2), 190. https://doi.org/10.1037/h0040288
  • Knight, A. P., & Baer, M. (2014). Get up, stand up: The effects of a non-sedentary workspace on information elaboration and group performance. Social Psychological and Personality Science, 5(8), 910–917. https://doi.org/10.1177/1948550614538463
  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185. https://doi.org/10.1126/science.1088545
  • *Larson, M. J., LeCheminant, J. D., Carbine, K., Hill, K. R., Christenson, E., Masterson, T., & LeCheminant, R. (2015a). Slow walking on a treadmill desk does not negatively affect executive abilities: An examination of cognitive control, conflict adaptation, response inhibition, and post-error slowing. Frontiers in Psychology, 6, 723. https://doi.org/10.3389/fpsyg.2015.00723
  • *Larson, M. J., LeCheminant, J. D., Hill, K., Carbine, K., Masterson, T., & Christenson, E. (2015b). Cognitive and typing outcomes measured simultaneously with slow treadmill walking or sitting: Implications for treadmill desks. PLoS ONE, 10(4), e0121309. https://doi.org/10.1371/journal.pone.0121309
  • *Lindheimer, J. B., O’Connor, P. J., McCully, K. K., & Dishman, R. K. (2017). The effect of light-intensity cycling on mood and working memory in response to a randomized, placebo-controlled design. Psychosomatic Medicine, 79(2), 243–253. https://doi.org/10.1097/PSY.0000000000000381
  • *Liu, F., Sulpizio, S., Kornpetpanee, S., & Job, R. (2017). It takes biking to learn: Physical activity improves learning a second language. PloS One, 12(5), e0177624. https://doi.org/10.1371/journal.pone.0177624
  • *Lo Bue-Estes, C., Willer, B., Burton, H., Leddy, J. J., Wilding, G. E., & Horvath, P. J. (2008). Short-term exercise to exhaustion and its effects on cognitive function in young women. Perceptual and Motor Skills, 107(3), 933–945. https://doi.org/10.2466/PMS.107.7.933-945
  • *Loprinzi, P. D., Day, S., & Deming, R. (2019). Acute exercise intensity and memory function: Evaluation of the transient hypofrontality hypothesis. Medicina, 55(8), 445. https://doi.org/10.3390/medicina55080445
  • *Loprinzi, P. D., & Kane, C. J. (2015). Exercise and cognitive function: A randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proceedings, 90(4), 450–460. https://doi.org/10.1016/j.mayocp.2014.12.023
  • *Loprinzi, P. D., Koehler, L., Frith, E., Ponce, P., Delancey, D., Joyner, C., Ashpole, N. M., Zou, L., & Li, H. (2019b). Acute exercise, psychological stress induction, and episodic memory. American Journal of Health Behavior, 43(6), 1016–1029. https://doi.org/10.5993/AJHB.43.6.1
  • *Lowe, C. J., Kolev, D., & Hall, P. A. (2016). An exploration of exercise-induced cognitive enhancement and transfer effects to dietary self-control. Brain and Cognition, 110, 102–111. https://doi.org/10.1016/j.bandc.2016.04.008
  • Mahar, M. T., Murphy, S. K., Rowe’, D. A., Golden, J., Shields, A. T., & Raedeke’, T. D. (2006). Effects of a classroom-based program on physical activity and on-task behavior. Medicine & Science in Sports & Exercise, 38(12), 2086–2094. https://doi.org/10.1249/01.mss.0000235359.16685.a3
  • *Martins, A. Q., Kavussanu, M., Willoughby, A., & Ring, C. (2013). Moderate intensity exercise facilitates working memory. Psychology of Sport and Exercise, 14(3), 323–328. https://doi.org/10.1016/j.psychsport.2012.11.010
  • Mavilidi, M. F., Ruiter, M., Schmidt, M., Okely, A. D., Loyens, S., Chandler, P., & Paas, F. (2018). A narrative review of school-based physical activity for enhancing cognition and learning: The importance of relevancy and integration. Frontiers in Psychology, 9, 2079. https://doi.org/10.3389/fpsyg.2018.02079
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • *O’Leary, K. C., Pontifex, M. B., Scudder, M. R., Brown, M. L., & Hillman, C. H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology, 122(8), 1518–1525. https://doi.org/10.1016/j.clinph.2011.01.049
  • *Olson, R. L., Chang, Y.-K., Brush, C. J., Kwok, A. N., Gordon, V. X., & Alderman, B. L. (2016). Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise. NeuroImage, 131, 171–180. https://doi.org/10.1016/j.neuroimage.2015.10.011
  • Pesce, C. (2009). An integrated approach to the effect of acute and chronic exercise on cognition: The linked role of individual and task constraints. In T. McMorris, P. D. Tomporowski, & M. Audiffren (Eds.), Exercise and cognitive function (pp. 213–226). John Wiley and Sons. https://doi.org/10.1002/9780470740668.ch11
  • *Pilcher, J. J., & Baker, V. C. (2016). Task performance and meta-cognitive outcomes when using activity workstations and traditional desks. Frontiers in Psychology, 7, 957. https://doi.org/10.3389/fpsyg.2016.00957
  • *Pilcher, J. J., Morris, D. M., Bryant, S. A., Merritt, P. A., & Feigl, H. B. (2017). Decreasing sedentary behavior: Effects on academic performance, meta-cognition, and sleep. Frontiers in Neuroscience, 11, 219. https://doi.org/10.3389/fnins.2017.00219
  • *Pontifex, M. B., & Hillman, C. H. (2007). Neuroelectric and behavioral indices of interference control during acute cycling. Clinical Neurophysiology, 118(3), 570–580. https://doi.org/10.1016/j.clinph.2006.09.029
  • Quas, J. A., & Lench, H. C. (2007). Arousal at encoding, arousal at retrieval, interviewer support, and children’s memory for a mild stressor. Applied Cognitive Psychology, 21(3), 289–305. https://doi.org/10.1002/acp.1279
  • Rezende, L. F. M. d., Rodrigues Lopes, M., Rey-López, J. P., Matsudo, V. K. R., & Luiz, O. d. C. (2014). Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE, 9(8), e105620. https://doi.org/10.1371/journal.pone.0105620
  • Rinkenauer, G., Osman, A., Ulrich, R., Müler-Gethmann, H., & Mattes, S. (2004). On the locus of speed-accuracy trade-off in reaction time: Inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 133(2), 261–282. https://doi.org/10.1037/0096-3445.133.2.261
  • Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92. https://doi.org/10.1016/j.intell.2006.05.004
  • Royall, D. R., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., Kaufer, D. I., LaFrance, C., & Coffey, C. E. (2002). Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 377–405. https://doi.org/10.1176/jnp.14.4.377
  • Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D., & Patton, G. C. (2018). The age of adolescence. The Lancet Child & Adolescent Health, 2(3), 223–228. https://doi.org/10.1016/S2352-4642(18)30022-1
  • *Schmidt-Kassow, M., Zink, N., Mock, J., Thiel, C., Vogt, L., Abel, C., & Kaiser, J. (2014). Treadmill walking during vocabulary encoding improves verbal long-term memory. Behavioral and Brain Functions, 10(24), 1–9. https://doi.org/10.1186/1744-9081-10-24
  • *Schramke, C. J., & Bauer, R. M. (1997). State-dependent learning in older and younger adults. Psychology and Aging, 12(2), 255–262. https://doi.org/10.1037/0882-7974.12.2.255
  • Sherry, A. P., Pearson, N., & Clemes, S. A. (2016). The effects of standing desks within the school classroom: A systematic review. Preventive Medicine Reports, 3, 338–347. https://doi.org/10.1016/j.pmedr.2016.03.016
  • Sibley, B. A., & Beilock, S. L. (2007). Exercise and working memory: An individual differences investigation. Journal of Sport and Exercise Psychology, 29(6), 783–791. https://doi.org/10.1123/jsep.29.6.783
  • Singh, A. S., Saliasi, E., van den Berg, V., Uijtdewilligen, L., de Groot, R. H. M., Jolles, J., Andersen, L. B., Bailey, R., Chang, Y.-K., Diamond, A., Ericsson, I., Etnier, J. L., Fedewa, A. L., Hillman, C. H., McMorris, T., Pesce, C., Pühse, U., Tomporowski, P. D., & Chinapaw, M. J. M. (2018). Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. British Journal of Sports Medicine, 53(10), 640–647. https://doi.org/10.1136/bjsports-2017-098136
  • Sjöberg, H. (1980). Physical fitness and mental performance during and after work. Ergonomics, 23(10), 977–985. https://doi.org/10.1080/00140138008924807
  • *Soga, K., Shishido, T., & Nagatomi, R. (2015). Executive function during and after acute moderate aerobic exercise in adolescents. Psychology of Sport and Exercise, 16, 7–17. https://doi.org/10.1016/J.PSYCHSPORT.2014.08.010
  • St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology (2006), 59(4), 745–759. https://doi.org/10.1080/17470210500162854
  • Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., McAleenan, A., … Higgins, J. P. T. (2019). Rob 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, I4898. https://doi.org/10.1136/bmj.l4898
  • Stevens, C., & Bavelier, D. (2012). The role of selective attention on academic foundations: A cognitive neuroscience perspective. Developmental Cognitive Neuroscience, 2, S30–S48. https://doi.org/10.1016/j.dcn.2011.11.001
  • Timinkul, A., Kato, M., Omori, T., Deocaris, C. C., Ito, A., Kizuka, T., Sakairi, Y., Nishijima, T., Asada, T., & Soya, H. (2008). Enhancing effect of cerebral blood volume by mild exercise in healthy young men: A near-infrared spectroscopy study. Neuroscience Research, 61(3), 242–248. https://doi.org/10.1016/j.neures.2008.03.012
  • Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18. https://doi.org/10.1037/0096-1523.29.1.3
  • Tomporowski, P. D., & Ellis, N. R. (1986). Effects of exercise on cognitive processes. A review. Psychological Bulletin, 99(3), 338–346. https://doi.org/10.1037/0033-2909.99.3.338
  • Tremblay, M. S., Aubert, S., Barnes, J. D., Saunders, T. J., Carson, V., Latimer-Cheung, A. E., Chastin, S. F. M., Altenburg, T. M., & Chinapaw, M. J. M. (2017). Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 1–17. https://doi.org/10.1186/s12966-017-0525-8
  • Tremblay, M. S., LeBlanc, A. G., Kho, M. E., Saunders, T. J., Larouche, R., Colley, R. C., Goldfield, G., & Gorber, S. (2011). Systematic review of sedentary behaviour and health indicators in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 98. https://doi.org/10.1186/1479-5868-8-98
  • *Tsukamoto, H., Takenaka, S., Suga, T., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2017). Effect of exercise intensity and duration on postexercise executive function. Medicine & Science in Sports & Exercise, 49(4), 774–784. https://doi.org/10.1249/MSS.0000000000001155
  • Vygotsky, L. S. (2012). Thought and language. MIT press.
  • Wallace, K. (2015, December 10). Forget “sit down!” students now standing up to learn. CNN. https://edition.cnn.com/2015/12/10/health/standing-desks-impact-health-education/index.html
  • *Wang, C. C., Chu, C. H., Chu, I. H., Chan, K. H., & Chang, Y. K. (2013). Executive function during acute exercise: The role of exercise intensity. Journal of Sport & Exercise Psychology, 35(4), 358–367. https://doi.org/10.1123/jsep.35.4.358
  • Wassenaar, T. M., Williamson, W., Johansen-Berg, H., Dawes, H., Roberts, N., Foster, C., & Sexton, C. E. (2020). A critical evaluation of systematic reviews assessing the effect of chronic physical activity on academic achievement, cognition and the brain in children and adolescents: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 1–18. https://doi.org/10.1186/s12966-020-00959-y
  • *Wick, K., Faude, O., Manes, S., Zahner, L., & Donath, L. (2018). I can stand learning: A controlled pilot intervention study on the effects of increased standing time on cognitive function in primary school children. International Journal of Environmental Research and Public Health, 15(2), 356. https://doi.org/10.3390/ijerph15020356
  • Wilkerson, A. H., Bhochhibhoya, S., Dragicevic, A., & Umstattd Meyer, M. R. (2019). An ecological investigation of barriers and facilitators impacting standing desk use in real working conditions: A qualitative study. American Journal of Health Education, 50(5), 308–317. https://doi.org/10.1080/19325037.2019.1642266
  • *Williams, L. R. T., Pottinger, P. R., & Shapcott, D. G. (1985). Effects of exercise on choice reaction latency and movement speed. Perceptual and Motor Skills, 60(1), 67–71. https://doi.org/10.2466/pms.1985.60.1.67
  • *Yamazaki, Y., Sato, D., Yamashiro, K., Tsubaki, A., Yamaguchi, Y., Takehara, N., & Maruyama, A. (2017). Inter-individual differences in exercise-induced spatial working memory improvement: A near-infrared spectroscopy study. Advances in Experimental Medicine and Biology, 977, 81–88. https://doi.org/10.1007/978-3-319-55231-6_12
  • Zhang, Z. (2014). Too much covariates in a multivariable model may cause the problem of overfitting. Journal of Thoracic Disease, 6(9), E196–E197. https://doi.org/10.3978/j.issn.2072-1439.2014.08.33
  • *Zuniga, K. E., Mueller, M., Santana, A. R., & Kelemen, W. L. (2019). Acute aerobic exercise improves memory across intensity and fitness levels. Memory, 27(5), 628–636. https://doi.org/10.1080/09658211.2018.1546875