237
Views
8
CrossRef citations to date
0
Altmetric
Review

An update on repurposed medications for the treatment of drug-resistant tuberculosis

, &
Pages 1331-1340 | Received 07 Apr 2016, Accepted 29 Jun 2016, Published online: 18 Jul 2016

References

  • World Health Organization. World Health Organization, global tuberculosis report 2015. Geneva: World Health Organization 2015.
  • Shah NS, Wright A, Bai GH, et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis. 2007;13(3):380–387. doi:10.3201/eid1303.061400.
  • Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14:327–340. doi:10.1016/S1473-3099(13)70328-1.
  • Dooley KE, Obuku EA, Durakovic N, et al. World health organization group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? J Infect Dis. 2013;207:1352–1358. doi:10.1093/infdis/jis460.
  • Hugonnet J-E, Blanchard JS. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry. 2007;46(43):11998–12004. doi:10.1021/bi701506h.Irreversible.
  • Hugonnet J-E, Tremblay LW, Boshoff HI, et al. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009;323(5918):1215–1218. doi:10.1126/science.1167498.
  • Cynamon MH, Palmer GS. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1983;24(3):429–431.
  • Solapure S, Dinesh N, Shandil R, et al. In vitro and in vivo efficacy of β-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2506–2510.
  • Donald PR, Sirgel FA, Venter A, et al. Early bactericidal activity of amoxicillin in combination with clavulanic acid in patients with sputum smear-positive pulmonary tuberculosis. Scand J Infect Dis. 2001;33(6):466–469.
  • Ahmed I, Jabeen K, Inayat R, et al. Susceptibility testing of extensively drug-resistant and pre-extensively drug-resistant Mycobacterium tuberculosis against levofloxacin, linezolid, and amoxicillin-clavulanate. Antimicrob Agents Chemother. 2013;57(6):2522–2525.
  • Chambers HF, Kocagöz T, Sipit T, et al. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis. 1998;26(4):874–877.
  • Chambers HF, Turner J, Schecter GF, et al. Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother. 2005;49(7):2816–2821.
  • De Lorenzo S, Alffenaar JW, Sotgiu G, et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013;41(6):1386–1392.
  • Payen MC, De Wit S, Martin C, et al. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis [Case study]. Int J Tuberc Lung Dis. 2012;16(4):558–560. doi:10.5588/ijtld.11.0414.
  • Dauby N, Muylle I, Mouchet F, et al. Meropenem/clavulanate and linezolid treatment for extensively drug-resistant tuberculosis. Pediatr Infect Dis J. 2011;30(9):812–813. doi:10.1097/INF.0b013e3182154b05.
  • Sotgiu G, D’Ambrosio L, Centis R, et al. Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2016;17(3):373. doi:10.3390/ijms17030373.
  • Tiberi S, D’Ambrosio L, De Lorenzo S, et al. Ertapenem in the treatment of multidrug-resistant tuberculosis: first clinical experience: Table 1. Eur Respir J. 2016;47:333–336.
  • Van Rijn SP, Van Altena R, Akkerman OW, et al. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. Eur Respir J. 2016;47:1229–1234.
  • England K, Boshoff HIM, Arora K, et al. Meropenem-clavulanic acid shows activity against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother. 2012;56(6):3384–3387. doi:10.1128/AAC.05690-11.
  • Andini N, Nash KA. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob Agents Chemother. 2006;50(7):2560–2562. doi:10.1128/AAC.00264-06.
  • Cavalieri SJ, Biehle JR, Sanders WE. Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;39(7):1542–1545. doi:10.1128/AAC.39.7.1542.
  • Bosne-David S, Barros V, Verde SC, et al. Intrinsic resistance of Mycobacterium tuberculosis to clarithromycin is effectively reversed by subinhibitory concentrations of cell wall inhibitors. J Antimicrob Chemother. 2000;46(3):391–395. doi:10.1093/jac/46.3.391.
  • Dautzenberg B, Piperno D, Diot P, et al. Clarithromycin in the treatment of Mycobacterium avium lung infections in patients without AIDS. Clarithromycin Study Group of France. Chest. 1995;107:1035–1040. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7705112
  • Geneva WHO. WHO treatment guidelines for drug resistant tuberculosis: 2016 update. Geneva: World Health Organization; 2016.
  • Barry VC, Belton JG, Conalty ML, et al. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature. 1957;179:1013–1015. doi:10.1038/1791013a0.
  • Steel HC, Matlola NM, Anderson R. Inhibition of potassium transport and growth of mycobacteria exposed to clofazimine and B669 is associated with a calcium-independent increase in microbial phospholipase A2 activity. J Antimicrob Chemother. 1999;44(2):209–216. doi:10.1093/jac/44.2.209.
  • Boshoff H, Myers TG, Copp BR, et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novelinsights into drug mechanisms of action. J Biol Chem. 2004;279:40174–40184.
  • Reddy VM. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43:615–623.
  • Jagannath C, Reddy MV, Kailasam S, et al. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis: in vitro, intracellular, and in vivo studies. Am J Respir Crit Care Med. 1995;151:1083–1086.
  • Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of mmpl5 in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979–2981. doi:10.1128/AAC.00037-14.
  • Holdiness MR. Clinical pharmacokinetics of clofazimine: a review. Clin Pharmacokinet. 1989;16:74–85. doi:10.2165/00003088-198916020-00002.
  • Venkatesan K, Deo N, Gupta UD. Tissue distribution and deposition of clofazimine in mice following oral administration with or without isoniazid. Arzneimittel-Forschung. 2007;57(7):472–474. doi:10.1055/s-0031-1296634.
  • Diacon AH, Dawson R, Von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015;191(8):943–953. doi:10.1164/rccm.201410-1801OC.
  • Cho SH, Warit S, Wan B, et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51(4):1380–1385. doi:10.1128/AAC.00055-06.
  • Irwin SM, Gruppo V, Brooks E, et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob Agents Chemother. 2014;58(7):4026–4034. doi:10.1128/AAC.02565-14.
  • du Toit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches. Respir Res. 2006;7:118. doi:10.1186/1465-9921-7-118.
  • Van Deun A, Maug AKJ, Salim MAH, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182(5):684–692. doi:10.1164/rccm.201001-0077OC.
  • Mitnick CD, Shin SS, Seung KJ, et al. Comprehensive treatment of extensively drug-resistant tuberculosis. N Engl J Med. 2008;359:563–574. doi:10.1056/NEJMoa0800106.
  • Tang S, Yao L, Hao X, et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis. 2015;60(9):1361–1367. doi:10.1093/cid/civ027.
  • Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416. doi:10.1164/rccm.200604-571ST.
  • Nimmo C, Lipman M, Phillips PPJ, et al. Shortening treatment of tuberculosis: lessons from fluoroquinolone trials. Lancet Infect Dis. 2015;15(2):141–143.
  • Thee S, Garcia-Prats AJ, Draper HR, et al. Pharmacokinetics and safety of moxifloxacin in children with multidrug-resistant tuberculosis. Clin Infect Dis. 2015;60(4):549–556. doi:10.1093/cid/ciu868.
  • Farhat MR, Mitnick CD, Franke MF, et al. Concordance of Mycobacterium tuberculosis fluoroquinolone resistance testing: implications for treatment. Int J Tuberc Lung Dis. 2015;19(3):339–341. doi:10.5588/ijtld.14.0814.
  • Kang YA, Shim TS, Koh WJ, et al. Choice between levofloxacin and moxifloxacin and multidrug-resistant tuberculosis treatment outcomes. Ann Am Thorac Soc. 2016;13(3):364–370.
  • Prideaux B, Via LE, Zimmerman MD, et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med. 2015;21(10):1223–1227. doi:10.1038/nm.3937.
  • Jo KW, Lee SD, Kim WS, et al. Treatment outcomes and moxifloxacin susceptibility in ofloxacin-resistant multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2014;18(1):39–43. doi:10.5588/ijtld.13.0307.
  • Aung KJM, Van Deun A, Declercq E, et al. Successful “9-month Bangladesh regimen” for multidrugresistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis. 2014;18(10):1180–1187. doi:10.5588/ijtld.14.0100.
  • Caminero JA, Sotgiu G, Zumla A, et al. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis. 2010;10(9):621–629. doi:10.1016/s1473-3099(10)70139-0.
  • Kuaban C. First results with a 9-month regimen for multidrug-resistant tuberculosis (MDRTB) in francophone Africa. 46th World Health Conference on Lung Health of the International Union Against Tuberculosis and lung Disease; Cape Town, 2016 Dec 1–6.
  • Fortun J, Martin-Davila P, Navas E, et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J Antimicrob Chemother. 2005;56(1):180–185. doi:10.1093/jac/dki148.
  • Alffenaar JWC, Van Altena R, Harmelink IM, et al. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients. Clin Pharmacokinet. 2010;49(8):559–565. doi:10.2165/11532080-000000000-00000.
  • Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2012;16(4):447–454. doi:10.5588/ijtld.11.0451.
  • Schecter GF, Scott C, True L, et al. Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 2010;50(1):49–55. doi:10.1086/648675.
  • Tang SJ, Zhang Q, Zeng LH, et al. Efficacy and safety of linezolid in the treatment of extensively drug-resistant tuberculosis. Jpn J Infect Dis. 2011;64(6):509–512.
  • Xu HB, Jiang RH, Li L, et al. Linezolid in the treatment of MDR-TB: a retrospective clinical study. Int J Tuberc Lung Dis. 2012;16(3):358–363.
  • Park IN, Hong SB, Oh YM, et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother. 2006;58(3):701–704. doi:10.1093/jac/dkl298.
  • Anger HA, Dworkin F, Sharma S, et al. Linezolid use for treatment of multidrug-resistant and extensively drug-resistant tuberculosis, New York City, 2000-06. J Antimicrob Chemother. 2010;65(4):775–783. doi:10.1093/jac/dkq017.
  • Udwadia ZF, Sen T, Moharil G. Assessment of linezolid efficacy and safety in MDR- and XDR-TB: an Indian perspective. Eur Respir J. 2010;35(4):936–938.
  • Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–1442. doi:10.1183/09031936.00022912.
  • Koh WJ, Kang YR, Jeon K, et al. Daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother. 2012;67(6):1503–1507. doi:10.1093/jac/dks078.
  • Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012;367(16):1508–1518. doi:10.1056/NEJMoa1201964.
  • Bolhuis MS, Van Altena R, Alffenaar J-WC. Comment on: daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother. 2012;67(8):2055–2056.
  • De Vriese AS, Coster RV, Smet J, et al. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis. 2006;42(8):1111–1117. doi:10.1086/501356.
  • von der Lippe B, Sandven P, Brubakk O. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB)–a report of ten cases. J Infect. 2006;52(2):92–96. doi:10.1016/j.jinf.2005.04.007.
  • Villar M, Sotgiu G, D’Ambrosio L, et al. Linezolid safety, tolerability and efficacy to treat multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2011;38(3):730–733.
  • RESIST-TB. DR-TB clinical trials progress report. 2016. Available from: http://www.resisttb.org/.
  • Migliori GB, Sotgiu G, Gandhi N, et al. Drug resistance beyond extensively drug-resistant tuberculosis: individual patient data meta-analysis. Eur Respir J. 2013;42(1):169–179.
  • Falzon D, Gandhi N, Migliori GB, et al. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur Respir J. 2013;42(1):156–168.
  • O’Neil J. The review of antimicrobial resistance chaired by Jim O’Neil. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. 2016 [cited 2016 Jun 1]. Avalable from: http://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • Lonnroth K, Migliori GB, Abubakar I, et al. Toward tuberculosis elimination: an action framework for low incidence coutnries. Eur Respir J. 2015;47(6). doi:10.1183/09031936.00214014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.