652
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of gut microbiota in the modulation of drug action: a focus on some clinically significant issues

Pages 171-183 | Received 30 Aug 2017, Accepted 05 Dec 2017, Published online: 16 Dec 2017

References

  • Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697.
  • Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77(8):1783–1812.
  • Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–429.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.
  • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180.
  • Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363(1–2):1–25.
  • Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–222.
  • Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273–287.
  • Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356(6344):pii: eaag2770.
  • Klotz U, Schwab M. Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57(2):267–279.
  • Sousa T, Yadav V, Zann V, et al. On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid. J Pharm Sci. 2014;103(10):3171–3175.
  • Rafii F, Cerniglia CE. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect. 1995;103(Suppl 5):17–19.
  • Azad Khan AK, Guthrie G, Johnston HH, et al. Tissue and bacterial splitting of sulphasalazine. Clin Sci (Lond). 1983 Mar;64(3):349–354.
  • Rafii F, Franklin W, Cerniglia CE. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol. 1990;56(7):2146–2151.
  • Ryan A, Wang CJ, Laurieri N, et al. Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases. Protein Cell. 2010;1(8):780–790.
  • Malik EM, Müller CE. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 2016;36(4):705–748.
  • Cirillo C, Capasso R. Constipation and botanical medicines: an overview. Phytother Res. 2015;29(10):1488–1493.
  • van Gorkom BA, De Vries EG, Karrenbeld A, et al. Review article: anthranoid laxatives and their potential carcinogenic effects. Aliment Pharmacol Ther. 1999;13(4):443–452.
  • Kobashi K, Nishimura T, Kusaka M, et al. Metabolism of sennosides by human intestinal bacteria. Planta Med. 1980;40(3):225–236.
  • Hattori M, Kim G, Motoike S, et al. Metabolism of sennosides by intestinal flora. Chem Pharm Bull (Tokyo). 1982;30(4):1338–1346.
  • Matsumoto M, Ishige A, Yazawa Y, et al. Promotion of intestinal peristalsis by Bifidobacterium spp. capable of hydrolysing sennosides in mice. PLoS One. 2012;7(2):e31700.
  • Akao T, Che QM, Kobashi K, et al. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins. Appl Environ Microbiol. 1994;60(3):1041–1043.
  • Akao T, Akao T, Mibu K, et al. Enzymatic reduction of sennidin and sennoside in Peptostreptococcus intermedius. J Pharmacobiodyn. 1985;8(10):800–807.
  • Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs. 2007;7(3):173–189.
  • Bavendiek U, Aguirre Davila L, Koch A, et al. Assumption versus evidence: the case of digoxin in atrial fibrillation and heart failure. Eur Heart J. 2017 Jan 8;pii: ehw577.
  • Ehle M, Patel C, Giugliano RP. Digoxin: clinical highlights: a review of digoxin and its use in contemporary medicine. Crit Pathw Cardiol. 2011;10(2):93–98.
  • Lindenbaum J, Tse-Eng D, Butler VP Jr, et al. Urinary excretion of reduced metabolites of digoxin. Am J Med. 1981;71(1):67–74.
  • Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–298.
  • Haiser HJ, Seim KL, Balskus EP, et al. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5(2):233–238.
  • Mathan VI, Wiederman J, Dobkin JF, et al. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut. 1989;30(7):971–977.
  • Alam AN, Saha JR, Dobkin JF, et al. Interethnic variation in the metabolic inactivation of digoxin by the gut flora. Gastroenterology. 1988;95(1):117–123.
  • Lindenbaum J, Rund DG, Butler VP Jr, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med. 1981;305(14):789–794.
  • Martino E, Della Volpe S, Terribile E, et al. The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett. 2017;27(4):701–707.
  • Wiseman LR, Markham A. Irinotecan. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. Drugs. 1996;52(4): 606–623.
  • Swami U, Goel S, Mani S. Therapeutic targeting of CPT-11 induced diarrhea: a case for prophylaxis. Curr Drug Targets. 2013;14(7):777–797.
  • Brandi G, Dabard J, Raibaud P, et al. Intestinal microflora and digestive toxicity of irinotecan in mice. Clin Cancer Res. 2006;12(4):1299–1307.
  • Pellock SJ, Redinbo MR. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292(21):8569–8576.
  • Wallace BD, Wang H, Lane KT, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–835.
  • Roberts AB, Wallace BD, Venkatesh MK, et al. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol Pharmacol. 2013;84(2):208–217.
  • Rasmussen TS, Koldsø H, Nakagawa S, et al. Synthesis of uronic-noeurostegine–a potent bacterial β-glucuronidase inhibitor. Org Biomol Chem. 2011;9(22):7807–7813.
  • Ahmad S, Hughes MA, Yeh LA, et al. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. J Biomol Screen. 2012;17(7):957–965.
  • Kong R, Liu T, Zhu X, et al. Old drug new use–amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin Cancer Res. 2014;20(13):3521–3530.
  • Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;15(Suppl 3):S3.
  • Goldstein JL, Chan FK, Lanas A, et al. Haemoglobin decreases in NSAID users over time: an analysis of two large outcome trials. Aliment Pharmacol Ther. 2011;34(7):808–816.
  • Wallace JL, Syer S, Denou E, et al. Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology. 2011;141(4):1314–1322, 1322.e1–5.
  • Lanas A, García-Rodríguez LA, Polo-Tomás M, et al. Time trends and impact of upper and lower gastrointestinal bleeding and perforation in clinical practice. Am J Gastroenterol. 2009;104(7):1633–1641.
  • Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci. 2013;131(2):654–667.
  • LoGuidice A, Wallace BD, Bendel L, et al. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther. 2012;341(2):447–454.
  • Saitta KS, Zhang C, Lee KK, et al. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica. 2014;44(1):28–35.
  • Balbaa SI, Zaki AY, el-Shamy AM. Qualitative and quantitative study of the flavonoid content of the different organs of Sophora japonica at different stages of development. Planta Med. 1974;25(4):325–330.
  • Rothwell JA, Pérez-Jiménez J, Neveu V, et al. Phenol-explorer 3.0: a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 10.1093/database/bat070; 2013.
  • Martinez-Zapata MJ, Vernooij RW, Uriona Tuma SM, et al. Phlebotonics for venous insufficiency. Cochrane Database Syst Rev. 2016 Apr 6;4:CD003229.
  • Hollman PC, de Vries JH, van Leeuwen SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995;62(6):1276–1282.
  • Jaganath IB, Mullen W, Edwards CA, et al. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res. 2006;40(10):1035–1046.
  • Walle T, Otake Y, Walle UK, et al. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr. 2000;130(11):2658–2661.
  • Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008;11(6):733–740.
  • Graefe EU, Wittig J, Mueller S, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41(5):492–499.
  • Bang SH, Hyun YJ, Shim J, et al. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J Microbiol Biotechnol. 2015;25(1):18–25.
  • Shin NR, Moon JS, Shin SY, et al. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett Appl Microbiol. 2016;62(1):68–74.
  • Sawai Y, Kohsaka K, Nishiyama Y, et al. Serum concentrations of rutoside metabolites after oral administration of a rutoside formulation to humans. Arzneimittelforschung. 1987;37(6):729–732.
  • Olthof MR, Hollman PC, Buijsman MN, et al. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr. 2003;133(6):1806–1814. Erratum in: J Nutr. 2003;133(8):2692.
  • Jaganath IB, Mullen W, Lean ME, et al. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic Biol Med. 2009;47(8):1180–1189.
  • Liu Y, Kurita A, Nakashima S, et al. 3,4-Dihydroxyphenylacetic acid is a potential aldehyde dehydrogenase inducer in murine hepatoma Hepa1c1c7 cells. Biosci Biotechnol Biochem. 2017;81(10):1978–1983.
  • Xue H, Xie W, Jiang Z, et al. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2. Xenobiotica. 2016;46(10):931–939.
  • Carrasco-Pozo C, Gotteland M, Castillo RL, et al. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic β-cells dysfunction induced by high cholesterol. Exp Cell Res. 2015;334(2):270–282.
  • Ho GT, Wangensteen H, Barsett H. Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW 264.7 macrophages and dendritic cells. Int J Mol Sci. 2017;18(3):pii: E584.
  • Cervantes-Laurean D, Schramm DD, Jacobson EL, et al. Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem. 2006;17(8):531–540.
  • Pashikanti S, de Alba DR, Boissonneault GA, et al. Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products. Free Radic Biol Med. 2010;48(5):656–663.
  • Vissiennon C, Nieber K, Kelber O, et al. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin–are they prodrugs? J Nutr Biochem. 2012;23(7):733–740.
  • Winter J, Moore LH, Dowell VR Jr, et al. C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol. 1989;55(5):1203–1208.
  • Winter J, Popoff MR, Grimont P, et al. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol. 1991;41(3):355–357.
  • Schneider H, Schwiertz A, Collins MD, et al. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol. 1999;171(2):81–91.
  • Stevens JF, Maier CS. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 2016;15(3):425–444.
  • Lyseng-Williamson KA, Perry CM. Micronised purified flavonoid fraction: a review of its use in chronic venous insufficiency, venous ulcers and haemorrhoids. Drugs. 2003;63(1):71–100.
  • Ivashev MN, Andreeva OA, Bandyukova VA, et al. Isolation of diosmin from plants of the genus Vicia and Hyssopus officinalis and its influence on blood coagulation. Pharm Chem J. 1995;29(10):707–709.
  • Marin FR, Ortuño A, Benavente-Garcia O, et al. Distribution of flavone glycoside diosmin in Hyssopus officinalis plants: changes during growth. Planta Med. 1998;64(2):181–182.
  • Barberán FAT, Gil MI, Tomás F, et al. Flavonoid aglycones and glycosides from Teucrium gnaphalodes. J Nat Prod. 1985;48(5):859–860.
  • Cova D, De Angelis L, Giavarini F, et al. Pharmacokinetics and metabolism of oral diosmin in healthy volunteers. Int J Clin Pharmacol Ther Toxicol. 1992;30(1):29–33.
  • Werner E, Boursier-Neyret C, Walther B. Beta-glucuronidase from Helix pomatia origin is not suitable for diosmetin analysis. J Pharm Biomed Anal. 2010;53(4): 1070–1071. author reply 1071–3.
  • Silvestro L, Tarcomnicu I, Dulea C, et al. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry. Anal Bioanal Chem. 2013;405(25):8295–8310.
  • Garner RC, Garner JV, Gregory S, et al. Comparison of the absorption of micronized (Daflon 500 mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. J Pharm Sci. 2002;91(1):32–40.
  • Najmanová I, Pourová J, Vopršalová M, et al. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol Nutr Food Res. 2016;60(5):981–991.
  • Wang D, Ho L, Faith J, et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol Nutr Food Res. 2015;59(6):1025–1040.
  • Masella R, Santangelo C, D’Archivio M, et al. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem. 2012;19(18):2901–2917.
  • Zhao M, Du L, Tao J, et al. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS. J Agric Food Chem. 2014;62(47):11441–11448.
  • Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm Drug Dispos. 2011;32(8):427–445.
  • Lai MY, Hsiu SL, Tsai SY, et al. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J Pharm Pharmacol. 2003;55(2):205–209.
  • Kim DH, Jung EA, Sohng IS, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998;21(1):17–23.
  • Li M, Shi A, Pang H, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014;156:210–215.
  • Tian S, He G, Song J, et al. Pharmacokinetic study of baicalein after oral administration in monkeys. Fitoterapia. 2012;83(3):532–540.
  • Pang H, Shi A, Li M, et al. Simultaneous determination of baicalein and baicalin in human plasma by high performance liquid chromatograph-tandem spectrometry and its application in a food-effect pharmacokinetic study. Drug Res (Stuttg). 2016;66(8):394–401.
  • Lai MY, Hsiu SL, Chen CC, et al. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of Scutellariae Radix in humans. Biol Pharm Bull. 2003;26(1):79–83.
  • Lin YT, Hsiu SL, Hou YC, et al. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora. Biol Pharm Bull. 2003;26(5):747–751.
  • Lee HJ, Zhang H, Orlovich DA, et al. The influence of probiotic treatment on sulfasalazine metabolism in rat. Xenobiotica. 2012;42(8):791–797.
  • Prudhviraj G, Vaidya Y, Singh SK, et al. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release. Eur J Pharm Biopharm. 2015;97(Pt A):164–172.
  • Montalto M, Gallo A, Gasbarrini A, et al. NSAID enteropathy: could probiotics prevent it? J Gastroenterol. 2013;48(6):689–697.
  • Robert A, Asano T. Resistance of germfree rats to indomethacin-induced intestinal lesions. Prostaglandins. 1977;14(2):333–341.
  • Melarange R, Moore G, Blower PR, et al. A comparison of indomethacin with ibuprofen on gastrointestinal mucosal integrity in conventional and germ-free rats. Aliment Pharmacol Ther. 1992;6(1):67–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.