156
Views
3
CrossRef citations to date
0
Altmetric
Review

Clinical pharmacology in HIV cure research – what impact have we seen?

ORCID Icon, & ORCID Icon
Pages 17-29 | Received 04 Jul 2018, Accepted 17 Dec 2018, Published online: 02 Jan 2019

References

  • Wang Z, Simonetti FR, Siliciano RF, et al. Measuring replication competent HIV-1: advances and challenges in defining the latent reservoir. Retrovirology. 2018 Feb 13;15(1):21.
  • Bruner KM, Hosmane NN, Siliciano RF. Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol. 2015 Apr;23(4):192–203.
  • Descours B, Petitjean G, Lopez-Zaragoza JL, et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature. 2017 Mar 23;543(7646):564–567. PubMed PMID: 28297712. Epub 2017/03/16. eng.
  • Abdel-Mohsen M, Kuri-Cervantes L, Grau-Exposito J, et al. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med. 2018 Apr 18;10(437).
  • Bertagnolli LN, White JA, Simonetti FR, et al. The role of CD32 during HIV-1 infection. Nature. 2018 Sep;561(7723):E17–E19.
  • Avettand-Fenoel V, Hocqueloux L, Ghosn J, et al. Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications. Clin Microbiol Rev. 2016 Oct;29(4):859–880.
  • Douek DC. Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev. 2003 Jul-Sep;5(3):172–177.
  • Baxter AE, O’Doherty U, Kaufmann DE. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology. 2018 Feb 2;15(1):18.
  • Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–155.
  • Pham HT, Mesplède T. The latest evidence for possible HIV-1 curative strategies. Drugs Context. 2018;7:212522.
  • Yukl SA, Boritz E, Busch M, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5):e1003347.
  • Ananworanich J, Chomont N, Eller LA, et al. HIV DNA set point is rapidly established in acute HIV infection and dramatically reduced by early ART. EBioMedicine. 2016;11:68–72.
  • Puertas MC, Massanella M, Llibre JM, et al. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. AIDS. 2014 Jan 28;28(3):325–334.
  • Crowell TA, Fletcher JL, Sereti I, et al. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation. J Int AIDS Soc. 2016;19(1):21163.
  • Byrareddy SN, Kallam B, Arthos J, et al. Targeting alpha4beta7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nat Med. 2014 Dec;20(12):1397–1400.
  • Laforge M, Silvestre R, Rodrigues V, et al. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J Clin Invest. 2018 Apr 2;128(4):1627–1640.
  • Buzon MJ, Martin-Gayo E, Pereyra F, et al. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol. 2014 Sep 1;88(17):10056–10065.
  • Martinez-Bonet M, Puertas MC, Fortuny C, et al. Establishment and replenishment of the viral reservoir in perinatally HIV-1-infected children initiating very early antiretroviral therapy. Clin Infect Dis. 2015 Oct 1;61(7):1169–1178.
  • Henrich TJ, Hatano H, Bacon O, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLoS Med. 2017 Nov;14(11):e1002417.
  • Colby DJ, Trautmann L, Pinyakorn S, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018 Jul;24(7):923–926.
  • Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA. 2014 Feb 11;111(6):2307–2312.
  • Rothenberger MK, Keele BF, Wietgrefe SW, et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1126–34.
  • Saez-Cirion A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog. 2013 Mar;9(3):e1003211.
  • Goujard C, Girault I, Rouzioux C, et al. HIV-1 control after transient antiretroviral treatment initiated in primary infection: role of patient characteristics and effect of therapy. Antivir Ther. 2012;17(6):1001–1009.
  • Salgado M, Rabi SA, O’Connell KA, et al. Prolonged control of replication-competent dual- tropic human immunodeficiency virus-1 following cessation of highly active antiretroviral therapy. Retrovirology. 2011 Dec 5;8:97.
  • Robb ML, Ananworanich J. Lessons from acute HIV infection. Curr Opin HIV AIDS. 2016 Nov;11(6):555–560.
  • Vigano A, Trabattoni D, Schneider L, et al. Failure to eradicate HIV despite fully successful HAART initiated in the first days of life. J Pediatr. 2006 Mar;148(3):389–391.
  • Giacomet V, Trabattoni D, Zanchetta N, et al. No cure of HIV infection in a child despite early treatment and apparent viral clearance. Lancet. 2014 Oct 4;384(9950):1320.
  • Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018 Jan 10;23(1):14–26.
  • Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012 Jul 25;487(7408):482–485.
  • Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis. 2014 Feb;27(1):29–35.
  • Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362.
  • Jiang G, Nguyen D, Archin NM, et al. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest. 2018 Mar 1;128(3):1190–1198.
  • Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005 Aug 13–19;366(9485):549–555.
  • Smith SM. Valproic acid and HIV-1 latency: beyond the sound bite. Retrovirology. 2005 Sep 19;2:56.
  • Siliciano JD, Lai J, Callender M, et al. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J Infect Dis. 2007 Mar 15;195(6):833–836.
  • Archin NM, Eron JJ, Palmer S, et al. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS. 2008 Jun 19;22(10):1131–1135.
  • Archin NM, Cheema M, Parker D, et al. Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PloS one. 2010 Feb 23;5(2):e9390.
  • Contreras X, Schweneker M, Chen CS, et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem. 2009 Mar 13;284(11):6782–6789.
  • Archin NM, Bateson R, Tripathy MK, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis. 2014;210(5):728–735.
  • Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014 Oct;10(10):e1004473.
  • Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014 Oct;1(1):e13–21.
  • Tsai P, Wu G, Baker CE, et al. In vivo analysis of the effect of panobinostat on cell-associated HIV RNA and DNA levels and latent HIV infection. Retrovirology. 2016 May 21;13(1):36.
  • Wei DG, Chiang V, Fyne E, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 2014 Apr;10(4):e1004071.
  • Sogaard OS, Graversen ME, Leth S, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 2015 Sep;11(9):e1005142.
  • Winckelmann A, Barton K, Hiener B, et al. Romidepsin-induced HIV-1 viremia during effective antiretroviral therapy contains identical viral sequences with few deleterious mutations. AIDS. 2017 Mar 27;31(6):771–779.
  • Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther. 2014 Sep;143(3):323–336.
  • Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10).
  • Routy JP, Tremblay CL, Angel JB, et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med. 2012 May;13(5):291–296.
  • Rasmussen TA, Tolstrup M, Brinkmann C, et al. Panobinostat induces HIV trascription and plasma viremia in HIV patients on suppressive cARt CROI. Abstract 438 LB. Boston, MA; 2014 Mar 3–6.
  • Marsden MD, Loy BA, Wu X, et al. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication. PLoS Pathog. 2017 Sep;13(9):e1006575.
  • Gohda J, Suzuki K, Liu K, et al. BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci Rep. 2018 Feb 23;8(1):3521.
  • Boehm D, Calvanese V, Dar RD, et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle (Georgetown, Tex). 2013 Feb 1;12(3):452–462.
  • Li Z, Guo J, Wu Y, et al. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 2013 Jan 7;41(1):277–287.
  • Banerjee C, Archin N, Michaels D, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012 Dec;92(6):1147–1154.
  • Xing S, Bullen CK, Shroff NS, et al. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol. 2011 Jun;85(12):6060–6064.
  • Doyon G, Zerbato J, Mellors JW, et al. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS. 2013 Jan 14;27(2):F7–F11.
  • Spivak AM, Andrade A, Eisele E, et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis. 2014 Mar;58(6):883–890.
  • Elliott JH, McMahon JH, Chang CC, et al. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV. 2015 Dec;2(12):e520–e529.
  • Laird GM, Bullen CK, Rosenbloom DI, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest. 2015 May;125(5):1901–1912.
  • Darcis G, Das AT, Berkhout B. Tackling HIV persistence: pharmacological versus CRISPR-based shock strategies. Viruses. 2018 Mar 29;10(44).
  • Spina CA, Anderson J, Archin NM, et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog. 2013;9(12):e1003834.
  • Kollar P, Rajchard J, Balounova Z, et al. Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol. 2014 Feb;52(2):237–242.
  • DeChristopher BA, Loy BA, Marsden MD, et al. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat Chem. 2012 Sep;4(9):705–710.
  • Reuse S, Calao M, Kabeya K, et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PloS one. 2009 Jun 30;4(6):e6093.
  • Darcis G, Kula A, Bouchat S, et al. An in-depth comparison of latency-reversing agent combinations in various in vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog. 2015 Jul;11(7):e1005063.
  • Mifsud EJ, Tan ACL, Jackson DC. TLR agonists as modulators of the innate immune response and their potential as agents against infectious disease. Front Immunol. 2014;5:79.
  • Buitendijk M, Eszterhas SK, Howell AL. Gardiquimod: a Toll-like receptor-7 agonist that inhibits HIV type 1 infection of human macrophages and activated T cells. AIDS Res Hum Retroviruses. 2013 Jun;29(6):907–918.
  • Bam RA, Hansen D, Irrinki A, et al. TLR7 Agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells. Antimicrob Agents Chemother. 2017 Jan;61(1).
  • Tsai A, Irrinki A, Kaur J, et al. Toll-like receptor 7 agonist GS-9620 Induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J Virol. 2017 Apr 15;91(8).
  • Lopez-Huertas MR, Jimenez-Tormo L, Madrid-Elena N, et al. The CCR5-antagonist Maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-agonist Bryostatin-1. Sci Rep. 2017 May 24;7(1):2385.
  • Madrid-Elena N, Garcia-Bermejo ML, Serrano-Villar S, et al. Maraviroc is associated with latent HIV-1 reactivation through NF-kappaB activation in resting CD4(+) T cells from HIV-Infected individuals on suppressive antiretroviral therapy. J Virol. 2018 Feb 14. JVI.01931–17.
  • Shan L, Deng K, Shroff NS, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012 Mar 23;36(3):491–501.
  • Deng K, Pertea M, Rongvaux A, et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature. 2015 Jan 15;517(7534):381–385.
  • Casazza JP, Bowman KA, Adzaku S, et al. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J Infect Dis. 2013 Jun 15;207(12):1829–1840.
  • Leth S, Schleimann MH, Nissen SK, et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV. 2016 Oct;3(10):e463–72.
  • Mothe B, Moltó J, Manzardo C, et al. Viral control induced by HIV ¬consv vaccines & romidepsin in early treated individuals. 24th Conference on Retroviruses and Opportunistic Infections (CROI); 2017 Feb 13–16; Seattle, Washington
  • Lim SY, Osuna CE, Hraber PT, et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci Transl Med. 2018 May 2;10(439).
  • Cummins NW, Sainski-Nguyen AM, Natesampillai S, et al. Maintenance of the HIV reservoir is antagonized by selective BCL2 inhibition. J Virol. 2017 Jun 1;91(11).
  • Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, et al. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology. 2008 Jan 31;5:11.
  • Pache L, Dutra MS, Spivak AM, et al. BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by smac mimetics to promote reversal of viral latency. Cell Host Microbe. 2015 Sep 9;18(3):345–353.
  • Garcia-Vidal E, Castellvi M, Pujantell M, et al. Evaluation of the innate immune modulator acitretin as a strategy to clear the HIV reservoir. Antimicrob Agents Chemother. 2017 Nov;61(11).
  • Cummins NW, Sainski AM, Dai H, et al. Prime, shock, and kill: priming CD4 T cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces HIV reservoir size. J Virol. 2016 Apr;90(8):4032–4048.
  • Grant RC 1, Rachel SB 1, Chu Y-L 1, et al. Selectively eliminating HIV latently infected cells without viral reactivation conference dates and location; 2015 Feb 23–26; Seattle, Washington. Abstract Number: 387
  • Campbell GR, Bruckman RS, Chu YC, et al. Selectively eliminating HIV latently infected cells without viral reactivation. 22nd Conference on Retroviruses and Opportunistic Infections. Seattle, WA; 2015. Abstract 387.
  • Li P, Kaiser P, Lampiris HW, et al. Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nat Med. 2016 Jul;22(7):807–811.
  • Barouch DH, Deeks SG. Immunologic strategies for HIV-1 remission and eradication. Science (New York, NY). 2014 Jul 11;345(6193):169–174.
  • McGary CS, Deleage C, Harper J, et al. CTLA-4(+)PD-1(-) Memory CD4(+) T cells critically contribute to viral persistence in antiretroviral therapy-suppressed, SIV-infected rhesus macaques. Immunity. 2017 Oct 17;47(4):776–88 e5.
  • Cartwright EK, Spicer L, Smith SA, et al. CD8(+) Lymphocytes are required for maintaining viral suppression in SIV-infected macaques treated with short-term antiretroviral therapy. Immunity. 2016 Sep 20;45(3):656–668.
  • Micci L, Ryan ES, Fromentin R, et al. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest. 2015 Dec;125(12):4497–4513.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018 Feb;18(2):91–104.
  • Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006 Sep 21;443(7109):350–354.
  • Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006 Oct;12(10):1198–1202.
  • Dyavar Shetty R, Velu V, Titanji K, et al. PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques. J Clin Invest. 2012 May;122(5):1712–1716.
  • Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV Infection. PLoS Pathog. 2016 Jan;12(1):e1005349.
  • Wightman F, Solomon A, Kumar SS, et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS. 2015 Feb 20;29(4):504–506.
  • Van der Sluis RM, Kumar NA, Evans VA, et al. Anti-PD-1 disrupts HIV latency in non-proliferating but not in proliferating T cells (Abstract OA 3-3). IAS HIV Cure & Cancer Forum 2017. July 2017. Paris, France.
  • Gay CL, Bosch RJ, Ritz J, et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 Infected participants on suppressive antiretroviral therapy. J Infect Dis. 2017 Jun 1;215(11):1725–1733.
  • Porichis F, Hart MG, Massa A, et al. Immune checkpoint blockade restores HIV-specific CD4 T cell help for NK cells. J Immunol. 2018 Aug 1;201(3):971–981.
  • Mueller YM, Bojczuk PM, Halstead ES, et al. IL-15 enhances survival and function of HIV-specific CD8+ T cells. Blood. 2003 Feb 1;101(3):1024–1029.
  • Webb GM, Li S, Mwakalundwa G, et al. The human IL-15 superagonist ALT-803 directs SIV-specific CD8(+) T cells into B-cell follicles. Blood Adv. 2018 Jan 23;2(2):76–84.
  • Ellis-Connell AL, Balgeman AJ, Zarbock KR, et al. ALT-803 transiently reduces simian immunodeficiency virus replication in the absence of antiretroviral treatment. J Virol. 2018 Feb 1;92(3).
  • Zhou T, Georgiev I, Wu X, et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science (New York, NY). 2010 Aug 13;329(5993):811–817.
  • Caskey M, Klein F, Lorenzi JC, et al. Corrigendum: viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2016 Jul 28;535(7613):580.
  • Huang J, Ofek G, Laub L, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012 Nov 15;491(7424):406–412.
  • Liao HX, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature. 2013 Apr 25;496(7446):469–476.
  • Gao F, Bonsignori M, Liao HX, et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell. 2014 Jul 31;158(3):481–491.
  • Schoofs T, Klein F, Braunschweig M, et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science (New York, NY). 2016 May 20;352(6288):997–1001.
  • Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science (New York, NY). 2016 May 20;352(6288):1001–1004.
  • Chun T-W, Murray D, Justement JS, et al. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13151–13156.
  • Barouch DH, Whitney JB, Moldt B, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013 Nov 14;503(7475):224–228.
  • Shingai M, Nishimura Y, Klein F, et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature. 2013 Nov 14;503(7475):277–280.
  • Lynch RM, Boritz E, Coates EE, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015 Dec 23;7(319):319ra206.
  • Bar KJ, Sneller MC, Harrison LJ, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. New Engl J Med. 2016 Nov 24;375(21):2037–2050.
  • Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016 Jul 28;535(7613):556–560.
  • Huang Y, Yu J, Lanzi A, et al. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell. 2016 Jun 16;165(7):1621–1631.
  • Xu L, Pegu A, Rao E, et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science (New York, NY). 2017 Oct 6;358(6359):85–90.
  • Brozy J, Schlaepfer E, Mueller CKS, et al. Antiviral activity of HIV gp120 targeting bispecific T cell engager (BiTE(R)) antibody constructs. J Virol. 2018 Jun 29;92(14).
  • Wu X, Guo J, Niu M, et al. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. J Clin Invest. 2018 Jun 1;128(6):2239–2251.
  • Denton PW, Long JM, Wietgrefe SW, et al. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog. 2014 Jan;10(1):e1003872.
  • Martinez-Navio JM, Fuchs SP, Pedreno-Lopez S, et al. Host anti-antibody responses following adeno-associated virus-mediated delivery of antibodies against HIV and SIV in Rhesus Monkeys. Mol ther. 2016 Feb;24(1):76–86.
  • Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol Ther Methods Clin Dev. 2016;3:16068.
  • Borducchi EN, Liu J, Nkolola JP, et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature. 2018 Nov;563(7731):360–364. Epub 2018 Oct 3. Erratum in: Nature. 2018 Nov 5.
  • Establish and Characterize an Acute HIV Infection Cohort in a High Risk Population. ClinicalTrials.gov Identifier: NCT00796146. Available from: https://clinicaltrials.gov/ct2/show/record/NCT00796146
  • A Clinical Trial of PGDM1400 and PGT121 Monoclonal Antibodies in HIV-infected and HIV-uninfected Adults. ClinicalTrials.gov Identifier: NCT03205917. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03205917
  • Pace CS, Fordyce MW, Franco D, et al. Anti-CD4 monoclonal antibody ibalizumab exhibits breadth and potency against HIV-1, with natural resistance mediated by the loss of a V5 glycan in envelope. J Acquir Immune Defic Syndr. 2013 Jan 1;62(1):1–9.
  • Padte NN, Yu J, Huang Y, et al. Engineering multi-specific antibodies against HIV-1. Retrovirology. 2018 Aug 29;15(1):60.
  • Emu B, Fessel J, Schrader S, et al. 3 Study of Ibalizumab for multidrug-resistant HIV-1. N Engl J Med. 2018 Aug 16;379(7):645–654.
  • Murga JD, Franti M, Pevear DC, et al. Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2006 Oct;50(10):3289–3296.
  • Jacobson JM, Lalezari JP, Thompson MA, et al. Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob Agents Chemother. 2010;54(10):4137–4142.
  • Thompson MA. The return of PRO 140, a CCR5-directed mAb. Curr Opin HIV AIDS. 2018 Jul;13(4):346–353.
  • Colonna L, Peterson CW, Schell JB, et al. Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun. 2018 Oct 25;9(1):4438.
  • Peterson CW, Kiem HP. Cell and gene therapy for HIV cure. Curr Top Microbiol Immunol. 2018;417:211–248.
  • Rusconi S. Investigators involvement in the care of HIV-infected individuals: the experience in recent clinical trials. J Acquir Immune Defic Syndr. 2011 Dec 1;58(4):e118–9.
  • Henderson GE, Peay HL, Kroon E, et al. Ethics of treatment interruption trials in HIV cure research: addressing the conundrum of risk/benefit assessment. J Med Ethics. 2018 Apr;44(4):270–276.
  • Johnston RE, Heitzeg MM. Sex, age, race and intervention type in clinical studies of HIV cure: a systematic review. AIDS Res Hum Retroviruses. 2015 Jan;31(1):85–97.
  • Rainwater-Lovett K, Luzuriaga K, Persaud D. Very early combination antiretroviral therapy in infants: prospects for cure. Curr Opin HIV AIDS. 2015 Jan;10(1):4–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.