369
Views
15
CrossRef citations to date
0
Altmetric
Review

The role of xenobiotic-metabolizing enzymes in the placenta: a growing research field

, , , , ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 247-263 | Received 22 Feb 2019, Accepted 19 Feb 2020, Published online: 04 Mar 2020

References

  • Tetro N, Moushaev S, Rubinchik-Stern M, et al. The placental barrier: the gate and the fate in drug distribution. Pharm Res. 2018;35(4):71.
  • Storvik M, Huuskonen P, Pehkonen P, et al. The unique characteristics of the placental transcriptome and the hormonal metabolism enzymes in placenta. Reprod Toxicol. 2014;47:9–14.
  • Collier AC, Thévenon AD, Goh W, et al. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term. Eur J Drug Metab Pharmacokinet. 2015;40(4):471–480.
  • Audus KL. Controlling drug delivery across the placenta. Eur J Pharm Sci. 1999;8(3):161–165.
  • Mitchell AA, Gilboa SM, Werler MM, et al. Medication use during pregnancy, with particular focus on prescription drugs 1976–2008. Am J Obstet Gynecol. 2011;205(51):e1–e8.
  • Etwel F, Hutson JR, Madadi P, et al. Fetal and perinatal exposure to drugs and chemicals: novel biomarkers of risk. Annu Rev Pharmacol Toxicol. 2014;54:295–315.
  • Buhimschi CS, Weiner CP. Medications in pregnancy and lactation: part 1. Teratol Obstet Gynecol. 2009;113:166–188.
  • Lacroix I, Damase-Michel C, Lapeyre-Mestre M, et al. Prescription of drugs during pregnancy in France. Lancet. 2000;356:1735–1736.
  • Andrade SE, Gurwitz JH, Davis RL, et al. Prescription drug use in pregnancy. Am J Obstet Gynaecol. 2004;191:398–407.
  • De Jong LT. Van den berg PB. A study of drug utilization during pregnancy in the light of known risks. Int J Risk Safety Med. 1990;1:91–105.
  • Richards N, Reith D, Stitely M, et al. Antiepileptic drug exposure in pregnancy and pregnancy outcome from national drug usage data. BMC Pregnancy Childbirth. 2018;18(1):1–8.
  • Finkelstein N. Treatment programming for alcohol and drug-depend women. Int J Addict. 1993;28:1275–1309.
  • Tong V, Jones J, Dietz P, et al. Pregnancy risk assessment monitoring system (PRAMS), United States, 2000-2005. Morb Mortal Wkly Rep. 2009;58:1.
  • Moore KL, Persaud TVN. The placenta and fetal membranes. In: The developing human: clinically oriented embryology. Philadelphia(PA): Saunders W.B. Co Inc; 2008. p. 110–144.
  • Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–1565.
  • Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online. 2016;32(1):14–43.
  • Griffiths S, Campbell J. Placental structure, function and drug transfer. BJA Educ. 2015;15(2):84–89.
  • Carter AM, Enders AC. Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol. 2004;2:46.
  • Syme MR, Paxton JW, Keelan JA, et al. Metabolism by the human placenta. Clin Pharmacokinet. 2004;43(8):487–514.
  • Joshi AA, Vaidya SS, St-Pierre MV, et al. Placental ABC transporters: biological impact and pharmaceutical significance. Pharm Res. 2016;33:2847–2878.
  • Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos. 2010;38(10):1623–1635.
  • Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012;20(9):736–763.
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158:693–705.
  • Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther. 2000;38:69–74.
  • Lye P, Bloise E, Nadeem L, et al. Glucocorticoids modulate multidrug resistance transporters in the first trimester human placenta. J Cell Mol Med. 2018;22(7):3652–3660.
  • Afrouzian M, Al-Lahham R, Patrikeeva S, et al. Role of the efflux transporters bcrp and mrp1 in human placental bio-disposition of pravastatin. Biochem Pharmacol. 2018;156:467–478.
  • Daud AN, Bergman JE, Bakker MK, et al. P-glycoprotein-mediated drug interactions in pregnancy and changes in the risk of congenital anomalies: a case-reference study. Drug Saf. 2015;38:651–659.
  • Welch RM, Harrison YE, Conney AH, et al. Cigarette smoking: stimulatory effect on metabolism of 3,4-benzpyrene by enzymes in human placenta. Science. 1968;160(3827):541–542. 3.
  • Vähäkangas K, Raunio H, Pasanen M, et al. Comparison of the formation of benzo[a]pyrene diolepoxide-DNA adducts in vitro by rat and human microsomes: evidence for the involvement of P-450IA1 and P-450IA2. J Biochem Toxicol. 1989;4(2):79–86.
  • Pasanen M, Pelkonen O. Xenobiotic and steroid-metabolizing monooxygenases catalysed by cytochrome P450 and glutathione-S-transferase conjugations in the human placenta and their relationships to maternal cigarette smoking. Placenta. 1990;11:75–85.
  • Pacifici GM, Rane A. Epoxide hydrolase in human placenta at different stages of pregnancy. Dev Pharmacol Ther. 1983;6(2):83–93.
  • Polidoro G, Di Ilio C, Del Boccio G, et al. Glutathione S-transferase activity in human placenta. Biochem Pharmacol. 1980;29(12):1677–1680.
  • Pacifici GM, Rane A. Glutathione S-epoxidetransferase in the human placenta at different stages of pregnancy. Drug Metab Dispos. 1981;9(5):472–475.
  • LO D, Koren G. Biotransformation of carcinogenic arylamines and arylamides by human placenta. J Lab Clin Med. 1994;124(1):134–141.
  • Smelt VA, Mardon HJ, Redman CW, et al. Acetylation of arylamines by the placenta. Eur J Drug Metab Pharmacokinet. 1997;22(4):403–408.
  • Smelt VA, Upton A, Adjaye J, et al. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet. 2000;9:1101–1107.
  • Zhu L, Lu L, Wang S et al. Developing solid oral dosage forms. pharmaceutical theory and practice 2nd. Chapter 11, oral absorption basics: pathways and physicochemical and biological factors affecting absorption. Burlington (MA):Pharmaceutical Theory and Practice Burlington (MA): Elsevier Academic Press; 2017 p. 297–329.
  • Pasanen M. The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev. 1999;38:81–97.
  • Pasanen M, Pelkonen O. The expression and environmental regulation of P450 enzymes in human placenta. Crit Rev Toxicol. 1994;24:211–229.
  • Cizkova K, Tauber Z. Time-dependent expression pattern of cytochrome P450 epoxygenases and soluble epoxide hydrolase in normal human placenta. Acta Histochem. 2018;120(6):513–519.
  • Hakkola J, Pasanen M, Hukkanen J, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta. Biochem Pharmacol. 1996;51(4):403–411.
  • Hakkola J, Raunio H, Purkunen R, et al. Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. Biochem Pharmacol. 1996;52(2):379–383.
  • Avery ML, Meek CE, Audusa KL. The presence of inducible cytochrome P450 types 1A1 and 1A2 in the bewo cell line. Placenta. 2003;24:45–52.
  • Hakkola J, Pasanen M, Pelkonen O, et al. Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis. 1997;18(2):391–397.
  • Bieche I, Narjoz C, Asselah T, et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics. 2007;17(9):731–742.
  • McRobie DJ, Glover DD, Tracy TS. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase. Drug Metab Dispos. 1998;26(4):367–371.
  • Collier AC, Tingle MD, Paxton JW, et al. Metabolizing enzyme localization and activities in the first trimester human placenta: the effect of maternal and gestational age, smoking and alcohol consumption. Hum Reprod. 2002;10:2564–2572.
  • Herse F, Lamarca B, Hubel CA, et al. Cytochrome P450 subfamily 2J polypeptide 2 expression and circulating epoxyeicosatrienoic metabolites in preeclampsia. Circulation. 2012;126(25):2990–2999.
  • Maezawa K, Matsunaga T, Takezawa T, et al. Cytochrome P450 3As gene expression and testosterone 6 beta-hydrolase activity in human fetal membranes and placenta at full term. Biol Pharm Bull. 2010;33:249–254.
  • Nishimura M, Yaguti H, Yoshitsugu H, et al. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003;123:369–375.
  • Dalle Vedove F, Fava C, Jiang H, et al. Increased epoxyeicosatrienoic acids and reduced soluble epoxide hydrolase expression in the preeclamptic placenta. J Hypertens. 2016;34(7):1364–1370.
  • Wixtrom RN, Silva MH, Hammock BD. Cytosolic epoxide hydrolase in human placenta. Placenta. 1988;9(5):559–563.
  • Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet. 2006;21(5):357–374.
  • Aiso S, Yasuda K, Shiozawa M, et al. Preparation of monoclonal antibodies to glutathione S-transferase-pi and application to immunohistochemical study. J Histochem Cytochem. 1989;7(8):1247–1252.
  • Reimers A, Ostby L, Stuen I, et al. Expression of UDP glucuronosyl transferase 1A4 in human placenta at term. Eur J Drug Metab Pharmacokinet. 2011;35(3–4):79–82.
  • Collier AC, Keelan JA, Van Zijl PE, et al. Human placental glucuronidation and transport of 3’azido-3’-deoxythymidine and uridine diphosphate glucuronic acid. Drug Metab Dispos Biol Fate Chem. 2004;32:813–820.
  • Stanley EL, Hume R, Visser TJ, et al. Differential expression of sulfotransferase enzymes involved in thyroid hormone metabolism during human placental development. J Clin Endocrinol Metab. 2001;86:5944–5955.
  • He D, Meloche CA, Dumas NA, et al. Different subcellular localization of sulphotransferase 2B1b in human placenta and prostate. Biochem J. 2004;379(Pt 3):533–540.
  • Whyatt RM, Bell DA, Jedrychowski W, et al. Polycyclic aromatic hydrocarbon-DNA adducts in human placenta and modulation by CYP1A1 induction and genotype. Carcinogenesis. 1998;19(8):1389–1392.
  • Mohammed AM, Karttunen V, Huuskonen P, et al. Transplacental transfer and metabolism of diuron in human placenta. Toxicol Lett. 2018;295:307–313.
  • Gallagher JE, Everson RB, Lewtas J, et al. Comparison of DNA adduct levels in human placenta from polychlorinated biphenyl exposed women and smokers in which CYP 1A1 levels are similarly elevated. Teratog Carcinog Mutagen. 1994;14(4):183–192.
  • Stejskalová L, Vrzal R, Rulcová A, et al. Effects of glucocorticoids on cytochrome P450 1A1 (CYP1A1) expression in isolated human placental trophoblast. J Appl Biomed. 2013;11:163–172.
  • Janssen BG, Gyselaers W, Byun HM, et al. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight. J Transl Med. 2017;15(1):5.
  • Myllynen P, Pasanen M, Vähäkangas K. The fate and effects of xenobiotics in human placenta. Expert Opin Drug Metab Toxicol. 2007;3(3):331–346.
  • Czekaj P, Wiaderkiewicz A, Florek E, et al. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol. 2005;79(1):13–24.
  • Rasheed A, Hines RN, McCarver-May DG. Variation in induction of human placental CYP2E1: possible role is susceptibility to fetal alcohol syndrome. Toxicol Appl Pharmacol. 1997;144:396–400.
  • Schuetz JD, Kauma S, Guzelian PS. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest. 1993;92:1018–1024.
  • Huuskonen P, Amezaga MR, Bellingham M, et al. The human placental proteome is affected by maternal smoking. Reprod Toxicol. 2016;63:22–31.
  • Sawada M, Kitamura R, Norose T, et al. Metabolic activation of aflatoxin B1 by human placental microsomes. J Toxicol Sci. 1993;18:129–132.
  • Storvik M, Huuskonen P, Kyllönen T, et al. Aflatoxin B1--a potential endocrine disruptor--up-regulates CYP19A1 in JEG-3 cells. Toxicol Lett. 2011;202(3):161–167.
  • Zharikova OL, Fokina VM, Nanovskaya TN, et al. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide. Biochem Pharmacol. 2009;78:1483–1490.
  • Deshmukh SV, Nanovskaya TN, Ahmed MS. Aromatase is the major enzyme metabolizing buprenorphine in human placenta. J Pharmacol Exp Ther. 2003;306:1099–1105.
  • Nanovskaya TN, Deshmukh SV, Nekhayeva IA, et al. Methadone metabolism by human placenta. Biochem Pharmacol. 2004;68:583–591.
  • Spector AA, Fang X, Snyder GD, et al. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res. 2004;43(1):55–90.
  • Schäfer WR, Zahradnik HP, Arbogast E, et al. Arachidonate metabolism in human placenta, fetal membranes, decidua and myometrium: lipoxygenase and cytochrome P450 metabolites as main products in HPLC profiles. Placenta. 1996;17(4):231–238.
  • Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.
  • Guthenberg C, Glutathione S-transferase MB. (transferase pi) from human placenta is identical or closely related to glutathione S-transferase (transferase rho) from erythrocytes. Biochim Biophys Acta. 1981;661(2):255–260.
  • Allocati N, Masulli M, Di Ilio C, et al. Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7:8.
  • Dalmizrak O, Kulaksiz-Erkmen G, Ozer N. Fluoxetine-induced toxicity results in human placental glutathione S-transferase-π (GST-π) dysfunction. Drug Chem Toxicol. 2016;39(4):439–444.
  • McRobie DJ, Glover DD, Tracy TS. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase. Drug Metab Dispos. 1998;26(4):367–371.
  • Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. lteration in the expression of proteins in unexplained recurrent pregnancy loss compared with in the normal placenta. J Reprod Dev. 2014;60(4):261–267.
  • Mackenzie PI, Bock KW, Burchell B, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 2005;15:677–685.
  • Meech R, Mackenzie PI. UGT3A: novel UDP-glycosyltransferases of the UGT superfamily. Drug Metab Rev. 2010;42:45–54.
  • Collier AC, Ganley NA, Tingle MD, et al. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol. 2002;63:409–419.
  • Coughtrie MWH. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact. 2016;25(259): 2–7. (PtA).
  • Falany CN, He D, Dumas N, et al. Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J Steroid Biochem Mol Biol. 2006;102:214–221.
  • Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab. 2008;9:129–143.
  • Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev. 2014;46(1):19–32.
  • Wakx A, Nedder M, Tomkiewicz-Raulet C, et al. Expression, localization, and activity of the aryl hydrocarbon receptor in the human placenta. Int J Mol Sci. 2018;19:3762.
  • Stejskalova L, Vecerova L, Peréz LM, et al. Aryl hydrocarbon receptor and aryl hydrocarbon nuclear translocator expression in human and rat placentas and transcription activity in human trophoblast cultures. Toxicol Sci. 2011;123(1):26–36.
  • Yamamoto J, Ihara K, Nakayama H, et al. Characteristic expression of aryl hydrocarbon receptor repressor gene in human tissues: organ-specific distribution and variable induction patterns in mononuclear cells. Life Sci. 2004;74(8):1039–1049.
  • Kolwankar D, Glover DD, Ware JA, et al. Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab Dispos. 2005;33:524–529.
  • Seok Heo J, Lim J, Pyo S, et al. Environmental benzopyrene attenuates stemness of placenta-derived mesenchymal stem cells via aryl hydrocarbon receptor. Stem Cells Int. 2019;2019:1–12.
  • Saif Z, Hodyl NA, Stark MJ, et al. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight. Placenta. 2015;36(7):723–730.
  • Johnson RF, Rennie N, Murphy V, et al. Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term. J Clin Endocrinol Metab. 2008;93(12):4887–4893.
  • Lee MJ, Wang Z, Yee H, et al. Expression and regulation of glucocorticoid receptor in human placental villous fibroblasts. Endocrinology. 2005;146:4619–4626.
  • Pavek P, Cerveny L, Svecova L, et al. Examination of glucocorticoid receptor alpha-mediated transcriptional regulation of P-glycoprotein, CYP3A4, and CYP2C9 genes in placental trophoblast cell lines. Placenta. 2007;28(10):1004–1011.
  • Pospechova K, Rozehnal V, Stejskalova L, et al. Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Mol Cell Endocrinol. 2009;299:178–187.
  • Olesya B, Margarita B, Irina K, et al. Expression of vitamin D and vitamin D receptor in chorionic villous in missed abortion. Gynecological Endocrinol. 2009;35:49–55.
  • Wilkens MR, Maté LM, Schnepel N, et al. Influence of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on expression of P-glycoprotein and cytochrome P450 3A in sheep. J Steroid Biochem Mol Biol. 2016;164:271–276.
  • Geenes VL, Dixon PH, Chambers J, et al. Characterization of the nuclear receptors FXR, PXR and CAR in normal and cholestatic placenta. Placenta. 2011;32:535–537.
  • Mir ODegrelle SA, et al. Chemotherapy in pregnancy: exploratory study of the effects of paclitaxel on the expression of placental drug transporters. Investig New Drugs. 2018;37(5):1–11.
  • Murayama N, Kazuki Y, Satoh D, et al. Induction of human cytochrome P450 3A enzymes in cultured placental cells by thalidomide and relevance to bioactivation and toxicity. J Toxicol Sci. 2017;42(3):343–348.
  • Collier AC, Helliwell RJ, Keelan JA, et al. 3´-Azido-3´-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta. Toxicol Appl Pharmacol. 2003;192:164–173.
  • Rubinchik-Stern M, Shmuel M, Eyal S. Antiepileptic drugs alter the expression of placental carriers: an in vitro study in a human placental cell line. Epilepsia. 2015;56(7):1023–1032.
  • Shmuel MBar J, et al. Adverse placental effects of valproic acid: studies in perfused human placentas. Epilepsia. 2018;59(5):1–11.
  • Kurosawa Y, Furugen A, Nishimura, et al. Evaluation of the effects of antiepileptic drugs on folic acid uptake by human placental choriocarcinoma cells. Toxicol In Vitro. 2018;48:104–110.
  • Neradugomma NK, Liao MZ, Buprenorphine MQ. Norbuprenorphine, R-methadone, and s-methadone upregulate BCRP/ABCG2 expression by activating aryl hydrocarbon receptor in human placental trophoblasts. Mol Pharmacol. 2017;91(3):237–249.
  • Reznicek J, Ceckova M, Tupova L, et al. Etravirine inhibits ABCG2 drug transporter and affects transplacental passage of tenofovir disoproxil fumarate. Placenta. 2016;47:124–129.
  • Patterson TA, Binienda ZK, Lipe GW, et al. Transplacental pharmacokinetics and fetal distribution of azidothymidine, its glucuronide, and phosphorylated metabolites in late-term rhesus macaques after maternal infusion. Drug Metab Dispos. 1997;25(4):453–459.
  • Liebes L, Mendoza S, Lee JD, et al. Further observations on zidovudine transfer and metabolism by human placenta. AIDS. 1993;7(4):590–592.
  • Hankins GD, Lowery CLJ, Scott RT, et al. Transplacental transfer of zidovudine in the near-term pregnant baboon. Am J Obstet Gynecol. 1990;163(3):728–732.
  • Nanovskaya T, Deshmukh S, Brooks M, et al. Transplacental transfer and metabolism of buprenorphine. J Pharmacol Exp Ther. 2002;300(1):26–33.
  • Concheiro M, Shakleya DM, Huestis MA. Simultaneous quantification of buprenorphine, norbuprenorphine, buprenorphine-glucuronide and norbuprenorphine-glucuronide in human umbilical cord by liquid chromatography tandem mass spectrometry. Forensic Sci Int. 2009;188(1–3):144–151.
  • Kacinko SL, Jones HE, Johnson RE, et al. Correlations of maternal buprenorphine dose, buprenorphine, and metabolite concentrations in meconium with neonatal outcomes. Clin Pharmacol Ther. 2008;84(5):604–612.
  • Concheiro M, Jones HE, Johnson RE, et al. Maternal buprenorphine dose, placenta buprenorphine, and metabolite concentrations and neonatal outcomes. Ther Drug Monit. 2010;32(2):206–215.
  • Wang X, Abdelrahman DR, Zharikova OL, et al. Bupropion metabolism by human placenta. Biochem Pharmacol. 2010;79(11):1684–1690.
  • Earhart AD, Patrikeeva S, Wang X, et al. Transplacental transfer and metabolism of bupropion. J Matern Fetal Neonatal Med. 2010;23(5):409–416.
  • Fokina VM, West H, Oncken C, et al. Bupropion therapy during pregnancy: the drug and its major metabolites in umbilical cord plasma and amniotic fluid. Am J Obstet Gynecol. 2016;215(4):497.e1-7.
  • Ravindran S, Zharikova OL, Hill RA, et al. Identification of glyburide metabolites formed by hepatic and placental microsomes of humans and baboons. Biochem Pharmacol. 2006;72(12):1730–1737.
  • Jain S, Zharikova OL, Ravindram S, et al. Glyburide metabolism by placentas of healthy and gestational diabetics. Ahmed Am J Perinatol. 2008;25(3):169–174.
  • de Castro A, Jones HE, Johnson RE, et al. Methadone, cocaine, opiates, and metabolite disposition in umbilical cord and correlations to maternal methadone dose and neonatal outcomes. Ther Drug Monit. 2011a;33(4):443–452.
  • Deshmukh SV, Nanovskaya TN, Hankins GD, et al. N-demethylation of levo-alpha-acetylmethadol by human placental aromatase. Biochem Pharmacol. 2004;67(5):885–892.
  • Balakrishnan B, Thorstensen EB, Ponnampalam AP, et al. Transplacental transfer and biotransformation of genistein in human placenta. Placenta. 2010;31(6):506–511.
  • Schenker S, Yang Y, Mattiuz E, et al. Olanzapine transfer by human placenta. Clin Exp Pharmacol Physiol. 1999;26(9):691–697.
  • Myllynen P, Pienimäki P, Raunio H, et al. Microsomal metabolism of carbamazepine and oxcarbazepine in liver and placenta. Hum Exp Toxicol. 1998;17(12):668–676.
  • Pienimäki P, Lampela E, Hakkola J, et al. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia. 1997;38:309–316.
  • Myllynen P, Pienimäki P, Jouppila P, et al. Transplacental passage of oxcarbazepine and its metabolites in vivo. Epilepsia. 2001;42(11):1482–1485.
  • Pohorecki R, Rayburn W, Coon WW, et al. Some factors affecting phencyclidine biotransformation by human liver and placenta. Drug Metab Dispos. 1989;17(3):271–274.
  • Rayburn WF, Holsztynska EF, Domino EF. Phencyclidine: biotransformation by the human placenta. Am J Obstet Gynecol. 1984;148(1):111–112.
  • Sodha RJ, Schneider H. Transplacental transfer of beta-adrenergic drugs studied by an in vitro perfusion method of an isolated human placental lobule. Am J Obstet Gynecol. 1983;147(3):303–310.
  • Sodha RJ, Proegler M, Schneider H. Transfer and metabolism of norepinephrine studied from maternal-to-fetal and fetal-to-maternal sides in the in vitro perfused human placental lobe. Am J Obstet Gynecol. 1984;148(4):474–481.
  • Borrisud M, O´Shaughnessy R, Alexander MS, et al. Metabolism and disposition of ritodrine in a pregnant baboon. Am J Obstet Gynecol. 1985;152(8):1067–1072.
  • Rettie AE, Heimark L, Mayer RT, et al. Stereoselective and regioselective hydroxylation of warfarin and selective O-dealkylation of phenoxazone ethers in human placenta. Biochem Biophys Res Commun. 1985;126(3):1013–1021.
  • Juchau MR, Zachariah PK. Comparative studies on the oxidation and reduction of drug substrates in human placental versus rat hepatic microsomes. Biochem Pharmacol. 1975;24:227–233.
  • Karttunen V, Myllynen P, Prochazka G, et al. Placental transfer and DNA binding of benzo(a)pyrene in human placental perfusion. Toxicol Lett. 2010;197(2):75–81.
  • Manchester DK, Bowman ED, Parker NB, et al. Determinants of polycyclic aromatic hydrocarbon-DNA adducts in human placenta. Cancer Res. 1992;52(6):1499–1503.
  • Tang D, Li TY, Liu JJ, et al. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort. Environ Health Perspect. 2006;114(8):1297–1300.
  • Topinka J, Milcova A, Libalova H, et al. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and their transplacental transfer to the foetus. Mutat Res. 2009;669(1–2):13–19.
  • Juchau MR, Namkung MJ, Jones AH, et al. Biotransformation and bioactivation of 7,12-dimethylbenz[a]anthracene in human fetal and placental tissues. Analyses of HPLC profiles and studies with salmonella typhimurium. Drug Metab Dispos. 1978;6(3):273–281.
  • Lamplugh SM, Hendrickse RG, Apeagyei F, et al. Aflatoxins in breast milk, neonatal cord blood, and serum of pregnant women. Br Med J (Clin Res Ed). 1988;296(6627):968.
  • Denning DW, Allen R, Wilkinson AP, et al. Transplacental transfer of aflatoxin in humans. Carcinogenesis. 1990;11(6):1033–1035.
  • Datta K, Kulkarni AP. Oxidative metabolism of aflatoxin B1 by lipoxygenase purified from human term placenta and intrauterine conceptual tissues. Teratology. 1994;50(4):311–317.
  • Partanen HA, El-Nezami HS, Leppänen JM, et al. Aflatoxin B1 transfer and metabolism in human placenta. Toxicol Sci. 2010;113(1):216–225.
  • Murthy KR, Joseph P, Kulkarni AP. 2‐aminofluorene bioactivation by human term placental peroxidase. Teratog Carcinog Mutagen. 1995;15:3.
  • Derewlany LO, Knie B, Koren G. Human placental transfer and metabolism of p-aminobenzoic acid. J Pharmacol Exp Ther. 1994;269(2):761–765.
  • Gerona RR, Woodruff TJDickenson CA, et al. Bisphenol-a (bpa), bpa glucuronide, and bpa sulfate in midgestation umbilical cord serum in a northern and central california population. Environ Sci Technol. 2013;47(21):12477–12485.
  • Liu J, Li J, Wu Y, et al. Bisphenol A metabolites and bisphenol s in paired maternal and cord serum. Environ Sci Technol. 2017;51(4):2456–2463.
  • Concheiro M, González-Colmenero E, Lendoiro E, et al. Alternative matrices for cocaine, heroin, and methadone in utero drug exposure detection. Ther Drug Monit. 2013;35(4):502–509.
  • Concheiro M, Lendoiro E, de Castro A, et al. Bioanalysis for cocaine, opiates, methadone, and amphetamines exposure detection during pregnancy. Drug Test Anal. 2017;9(6):898–904.
  • Joya X, Marchei E, Salat-Batlle J, et al. Drugs of abuse in maternal hair and paired neonatal meconium: an objective assessment of foetal exposure to gestational consumption. Drug Test Anal. 2016;8(8):864–868.
  • Parés X, Farrés J, Vallee BL. Organ specific alcohol metabolism: placental chi-ADH. Biochem Biophys Res Commun. 1984;119(3):1047–1055.
  • Andersson S, Halmesmäki E, Koivusalo M, et al. Placental alcohol metabolism in chronic alcohol abuse. Biol Neonate. 1989;56(2):90–93.
  • Karl PI, Gordon BH, Lieber CS, et al. Acetaldehyde production and transfer by the perfused human placental cotyledon. Science. 1988;242(4876):273–275.
  • Brien JF, Loomis CW, Tranmer J, et al. Disposition of ethanol in human maternal venous blood and amniotic fluid. Am J Obstet Gynecol. 1983;146(2):181–186.
  • Collazo NR, Sultatos LG. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human placental microsomes. Biochem Pharmacol. 1995;50(11):1933–1941.
  • Atalla A, Maser E. Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chem Biol Interact. 2001;130–132(1–3):737–748.
  • Chowdhury G, Murayama N, Okada Y, et al. Human liver microsomal cytochrome P450 3A enzymes involved in thalidomide 5-hydroxylation and formation of a glutathione conjugate. Chem Res Toxicol. 2010;23(6):1018–1024.
  • Kazuki Y, Akita M, Kobayashi K, et al. Thalidomide-induced limb abnormalities in a humanized CYP3A mouse model. Sci Rep. 2016;6:21419.
  • Zharikova OL, Ravindran S, Nanovskaya TN, et al. Kinetics of glyburide metabolism by hepatic and placental microsomes of human and baboon. Biochem Pharmacol. 2007;73(12):2012–2019.
  • Malek R, Davis SN. Pharmacokinetics, efficacy and safety of glyburide for treatment of gestational diabetes mellitus. Expert Opin Drug Metab Toxicol. 2016;12:691–699.
  • Hernández S, Catalán-García M, Morén C, et al. Placental mitochondrial toxicity, oxidative stress, apoptosis, and adverse perinatal outcomes in hiv pregnancies under antiretroviral treatment containing zidovudine. J Acquir Immune Defic Syndr. 2017;75:113–119.
  • Strydom K, Gerhardus-Nel D, Dhansay MA, et al. The effect of maternal HIV status and treatment duration on body composition of HIV-exposed and HIV-unexposed preterm, very and extremely low-birthweight infants. Paediatr Int Child Health. 2018;38(3):163–174.
  • Çetinkaya M, Özkan H, Köksal N. Unilateral radius aplasia due to lamotrigine and oxcarbazepine use in pregnancy. Matern Fetal Neonatal Med. 2008;21(12):927–930.
  • Schütz H, Feldmann KF, Faigle JW, et al. The metabolism of 14C oxcarbazepine in man. Xenobiotica. 1986;16(8):769–778.
  • Montouris G. Safety of the newer antiepileptic drug oxcarbazepine during pregnancy. Curr Med Res Opin. 2005;21:693–701.
  • Burnell JC, Li TK, Bosron WF. Purification and steady-state kinetic characterization of human liver beta 3 beta 3 alcohol dehydrogenase. Biochemistry. 1989;28(17):6810–6815.
  • Teschke R, Gellert J. Hepatic microsomal ethanol-oxidizing system (MEOS): metabolic aspects and clinical implications. Alcohol Clin Exp Res. 1986;10(6):20S–32S.
  • Agarwal DP. Genetic polymorphisms of alcohol metabolizing enzymes. Pathol Biol. 2001;49(9):703–709.
  • Lieber CS, DeCarli LM. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther. 1972;181(2):279–287.
  • Salihu HM, Kornosky JL, Lynch O, et al. Impact of prenatal alcohol consumption on placenta-associated syndromes. Alcohol. 2011;45(1):73–79.
  • Lui S, Jones RL, Robinson NJ, et al. Detrimental effects of ethanol and its metabolite acetaldehyde, on first trimester human placental cell turnover and function. PLOS One. 2014;9(2):87328.
  • Burd L, Blair J, Dropps K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J Perinatol. 2012;32:652–659.
  • Kvigne VL, Leonardson GR, Neff-Smith M, et al. Characteristics of children who have full or incomplete fetal alcohol syndrome. J Pediatr. 2004;145(5):635–640.
  • Taylor CL, Jones KL, Jones MC, et al. Incidence of renal anomalies in children prenatally exposed to ethanol. Pediatrics. 1994;94(2 Pt 1):209–212.
  • Tai M, Piskorski A, Kao JC, et al. Placental morphology in fetal alcohol spectrum disorders. Alcohol Alcohol. 2017;52(2):138–144.
  • Marbury MC, Linn S, Monson R, et al. The association of alcohol consumption with outcome of pregnancy. Am J Public Health. 1983;73(10):1165–1168.
  • Kalisch-Smith JI, Moritz KM. Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol. 2018;96(2):107–116.
  • Roe DA, Little BB, Bawdon RE, et al. Metabolism of cocaine by human placentas: implications for fetal exposure. Am J Obstet Gynecol. 1990;163(3):715–718.
  • Simone C, Derewlany LO, Oskamp M, et al. Acetylcholinesterase and butyrylcholinesterase activity in the human term placenta: implications for fetal cocaine exposure. J Lab Clin Med. 1994a;123(3):400–406.
  • Schenker S, Yang Y, Johnson RF, et al. The transfer of cocaine and its metabolites across the term human placenta. Clin Pharmacol Ther. 1993;53(3):329–339.
  • Simone C, Derewlany LO, Oskamp M, et al. Transfer of cocaine and benzoylecgonine across the perfused human placental cotyledon. Am J Obstet Gynecol. 1994b;170(5 Pt 1):1404–1410.
  • Moore CM, Brown S, Negrusz A, et al. Determination of cocaine and its major metabolite, benzoylecgonine, in amniotic fluid, umbilical cord blood, umbilical cord tissue, and neonatal urine: a case study. J Anal Toxicol. 1993;17(1):62.
  • Winecker RE, Goldberger BA, Tebbett I, et al. Detection of cocaine and its metabolites in amniotic fluid and umbilical cord tissue. J Anal Toxicol. 1997;21(2):97–104.
  • Ripple MG, Goldberger BA, Caplan YH, et al. Detection of cocaine and its metabolites in human amniotic fluid. J Anal Toxicol. 1992;16(5):328–331.
  • Srinivasan K, Wang PP, Eley AT, et al. Liquid chromatography--tandem mass spectrometry analysis of cocaine and its metabolites from blood, amniotic fluid, placental and fetal tissues: study of the metabolism and distribution of cocaine in pregnant rats. J Chromatogr B Biomed Sci Appl. 2000;745(2):287–303.
  • Morishima HO, Whittington RA, Khan K, et al. Norcocaine: maternal to fetal transfer. Anesthesiology. 1996;85(3A):882.
  • Narkowicz S, Płotka J, Polkowska Ż, et al. Prenatal exposure to substance of abuse: a worldwide problem. Environ Int. 2013;54:141–163.
  • Hurt H, Betancourt LM, Malmud EK, et al. Children with and without gestational cocaine exposure: A neurocognitive systems analysis. Neurotoxicol Teratol. 2009;31:334–341.
  • Huang P, Kehner GB, Cowan A, et al. Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther. 2001;297(2):688–695.
  • Jansson LM, Velez M, McConnell K, et al. Maternal buprenorphine treatment and fetal neurobehavioral development. Am J Obstet Gynecol. 2017;216(5):529.
  • Chomchai S, Phuditshinnapatra J, Mekavuthikul P, et al. Effects of unconventional recreational drug use in pregnancy. J Matern Fetal Neonatal Med. 2019;24(2):1.
  • Bondarev ML, Bondareva TS, Young R, et al. Behavioral and biochemical investigations of bupropion metabolites. Eur J Pharmacol. 2003;474:85–93.
  • Grabus SD, Carroll FI, Damaj MI. Bupropion and its main metabolite reverse nicotine chronic tolerance in the mouse. Nicotine Tob Res. 2012;14(11):1356–1361.
  • Ioakeimidis K, Vlachopoulos C, Katsi V, et al. Smoking cessation strategies in pregnancy: current concepts and controversies. Hellenic J Cardiol. 2019;60(1):11–15.
  • de Castro A, Jones HE, Johnson RE, et al. Maternal methadone dose, placental methadone concentrations, and neonatal outcomes. Clin Chem. 2011b;57(3):449–458.
  • Nekhayeva IA, Nanovskaya TN, Deshmukh SV, et al. Bidirectional transfer of methadone across human placenta. Biochem Pharmacol. 2005;69(1):187–197.
  • Sharpe C, Kuschel C. Outcomes of infants born to mothers receiving methadone for pain management in pregnancy. Arch Dis Child Fetal Neonatal Ed. 2004;89:33–36.
  • Bano U, Memon S, Shahani MY, et al. Epigenetic effects of in utero bisphenol A administration: diabetogenic and atherogenic changes in mice offspring. Iran J Basic Med Sci. 2019;22(5):521–528.
  • Matsumoto J, Yokota H, Yuasa A. Developmental increases in rat hepatic microsomal UDP glucuronosyltransferase activities toward xenoestrogens and decreases during pregnancy. Environ Health Perspect. 2002;110(2):193–196.
  • Strassburg CP, Strassburg A, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50(2):259–265.
  • Coughtrie MWH, Burchell B, Leakey JEA, et al. The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol Pharmacol. 1988;34(6):729–735.
  • Corbel T, Gayrard V, Puel S, et al. Bidirectional placental transfer of bisphenol A and its main metabolite, bisphenol A-glucuronide, in the isolated perfused human placenta. Reprod Toxicol. 2014;47:51–58.
  • Vom Saal FS, VandeVoort CA, Taylor JA, et al. Bisphenol A (BPA) pharmacokinetics with daily oral bolus or continuous exposure via silastic capsules in pregnant rhesus monkeys: relevance for human exposures. Reprod Toxicol. 2014;45:105–116.
  • Gauderat G, Picard-Hagen N, Toutain PL, et al. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A. Environ Int. 2016;86:52–59.
  • Van de Bor M. Fetal toxicology. Handb Clin Neurol. 2019;162:31–55.
  • Barrett ES, Sathyanarayana S, Mbowe O, et al. First-trimester urinary bisphenol a concentration in relation to anogenital distance, an androgen-sensitive measure of reproductive development, in infant girls. Environ Health Perspect. 2017;125(7):077008.
  • Mammadov E, Uncu M, Dalkan C. High prenatal exposure to bisphenol a reduces anogenital distance in healthy male newborns. J Clin Res Pediatr Endocrinol. 2018;10(1):25–29.
  • Lauer JM, Duggan CP, Ausman LM, et al. Maternal aflatoxin exposure during pregnancy and adverse birth outcomes in Uganda. Matern Child Nutr. 2019;15(2):e12701.
  • Wild CP, Rasheed FN, Jawla MF, et al. In-utero exposure to aflatoxin in west Africa. Lancet. 1991;337(8757):1602.
  • Hsieh LL, Hsieh TT. Detection of aflatoxin B1-DNA adducts in human placenta and cord blood. Cancer Res. 1993;53(6):1278–1280.
  • Turner PC, Collinson AC, Cheung YB, et al. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int J Epidemiol. 2007;36:1119–1125.
  • Joseph P, Srinivasan SN, Byczkowski JZ, et al. Bioactivation of benzo(a)pyrene-7,8-dihydrodiol catalyzed by lipoxygenase purified from human term placenta and conceptal tissues. Reprod Toxicol. 1994;8(4):307–313.
  • Phillips DH. Smoking-related DNA and protein adducts in human tissues. Carcinogenesis. 2002;23:1979–2004.
  • Perera FP, Rauh V, Whyatt RM, et al. A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology. 2005;26(4):573–587.
  • Wang S, Chanock S, Tang D, et al. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH–DNA adducts in African, American, Dominican, and Caucasian mothers and newborns. Cancer Epidemiol Biomarkers Prev. 2008;17:405–413.
  • Dejmek J, Solanský I, Benes I, et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect. 2000;108(12):1159–1164.
  • Perera FP, Rauh V, Tsai WY, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003;111(2):201–205.
  • Detmar J, Rennie MY, Whiteley KJ, et al. Fetal growth restriction triggered by polycyclic aromatic hydrocarbons is associated with altered placental vasculature and AhR-dependent changes in cell death. Am J Physiol Endocrinol Metab. 2008;295:519–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.