878
Views
21
CrossRef citations to date
0
Altmetric
Review

Strategies for recombinant production of antimicrobial peptides with pharmacological potential

, , , , , , , , & show all
Pages 367-390 | Received 16 Aug 2019, Accepted 30 Apr 2020, Published online: 16 Jun 2020

References

  • Hu Q, Yu Y, Gu D, et al. Detection of “Hidden” Antimicrobial Drug Resistance. ACS Infect Dis. 2019;5(7):1252–1263.
  • Nwibo DD, Panthee S, Hamamoto H, et al. Molecular characterization of multi-drug resistant coagulase negative cocci in non-hospital environment. Drug Discov Ther. 2019;13(3):145–149.
  • Mishra B, Reiling S, Zarena D, et al. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol. 2017;38:87–96.
  • Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev. 2019;43(5):1–27.
  • Romo AL, Quirós R. Appropriate use of antibiotics: an unmet need. Ther Adv Urol. 2019;11:9–17.
  • Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017;41(3):430–449.
  • Wang H, Jayaraman A, Menon R, et al. A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4. J Mol Med. 2019;97(9):1–13.
  • Jang S. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol. 2016;54(1):1–8.
  • Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat. 2017;31:1–14.
  • LEITE ML, SAMPAIO KB, COSTA FF, et al. Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors. An Acad Bras Cienc. 2018;90(1):1–23.
  • Liu Z, Zhu M, Chen X, et al. Expression and antibacterial activity of hybrid antimicrobial peptide cecropinA-thanatin in Pichia pastoris. Front Lab Med. 2018;2(1):23–29.
  • Hughes D, Andersson DI. Evolutionary Trajectories to Antibiotic Resistance. Annu Rev Microbiol. 2017;71(1):579–596.
  • Penchovsky R, Traykovska M. Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? . Expert Opin Drug Discovery. 2015;10:631–650.
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40:277–283.
  • Liu Y, Li R, Xiao X, et al. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol. 2019;45(3):301–314.
  • Sun J, Jiang J, Liu L, et al. Expression of the hybrid antimicrobial peptide lactoferrin–lysozyme in Pichia pastoris. Biotechnol Appl Biochem. 2019;66(2):202–208.
  • Deng T, Ge H, He H, et al. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif. 2017;140:52–59.
  • Zhang C, Yang M, Ericsson AC. Antimicrobial Peptides: potential Application in Liver Cancer. Front Microbiol. 2019;10:1–8.
  • Xia X, Cheng L, Zhang S, et al. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie Van Leeuwenhoek. 2018;111(1):5–26.
  • Moravej H, Moravej Z, Yazdanparast M, et al. Antimicrobial Peptides: features, action, and their resistance mechanisms in Bacteria. Microb Drug Resist. 2018;24(6):747–767.
  • Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: II. Protective effect of the bactericidal agent against experimental Pneumococcus infections in mice. J Exp Med. 1939;70(1):11–17.
  • Felício MR, Silva ON, Gonçalves S, et al. Peptides with dual Antimicrobial and Anticancer activities. Front Chem. 2017;5:1–9.
  • Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 2017;183:160–176.
  • Sierra JM, Fusté E, Rabanal F, et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017;17(6):663–676.
  • da Costa JP, Cova M, Ferreira R, et al. Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol. 2015;99(5):2023–2040.
  • Kang H, Kim C, Seo CH, et al. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017;55(1):1–12.
  • LCP VB, de Lima LMP, Migliolo L, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers. 2017;108:1–20.
  • LCP VB, Campos ML, Berlanda RLA, et al. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci. 2019;76(18):3525–3542.
  • Wu T, Wang M, Wu W, et al. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis. 2019;25:1–13.
  • Müller H, Salzig D, Czermak P. Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog. 2015;31(1):1–11.
  • Yazici A, Ortucu S, Taskin M, et al. Natural-based Antibiofilm and Antimicrobial Peptides from microorganisms. Curr Top Med Chem. 2019;18(24):2102–2107.
  • Haney EF, Mansour SC, Hancock REW. Antimicrobial Peptides. In: Hansen PR, editor. Methods Mol. Biol.. New York: Springer New York; 2017. p. 3–22.
  • Yan L, Adams ME, Lycotoxins A. Peptides from Venom of the Wolf Spider Lycosa carolinensis*. J Biol Chem. 1998;273(4):2059–2066.
  • Parachin NS, Mulder KC, Viana AAB, et al. Expression systems for heterologous production of antimicrobial peptides. Peptides. 2012;38(2):446–456.
  • Parachin NS, Mulder KC, Américo A, et al. Peptides expression systems for heterologous production of antimicrobial peptides. Peptides. 2012;38(2):446–456.
  • Wibowo D, Zhao C. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol. 2019;103(2):659–671.
  • Bou Ali M, Ben Ali Y, Aissa I, et al. Eukaryotic expression system Pichia pastoris affects the Lipase catalytic properties: A monolayer study. Deschenes RJ. editor PLoS One. 2014;9 e104221. 8:
  • Lanza AM, Curran KA, Rey LG, et al. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol. 2014;8(1):33.
  • Dyson MR. Fundamentals of Expression in Mammalian cells. In: Vega MC, editor. Adv. Technol. Protein Complex Prod. Charact. Brabahan (UK): Springer, Cham; 2016. p. 217–224.
  • Tanhaiean A, Azghandi M, Razmyar J, et al. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb Pathog. 2018;122:73–78.
  • Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int J Biol Macromol. 2018;106:803–822.
  • Brinkrolf K, Schröder J, Pühler A, et al. The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol. 2010;149(3):173–182.
  • Brawner ME. Advances in heterologous gene expression by Streptomyces. Curr Opin Biotechnol. 1994;5(5):475–481.
  • Squires CH, Retallack DM, Chew LC, et al. Heterologous Protein Production in P. fluorescens. Bioprocess Int. 2004;54–59.
  • Loeschcke A, Thies S. Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol. 2015;99(15):6197–6214.
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72(2):211–222.
  • Ahmad I, Nawaz N, Darwesh NM, et al. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif. 2018;144:12–18.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:1–17.
  • Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012;30(5):1102–1107.
  • Hayat SMG, Farahani N, Golichenari B, et al. Recombinant protein expression in Escherichia coli (E.coli): what we need to know. Curr Pharm Des. 2018;24(6):718–725.
  • Phillips TA, VanBogelen RA, Neidhardt FC. Lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol. 1984;159(1):283–287.
  • Gottesman S. Minimizing proteolysis in Escherichia coli: genetic solutions. Methods Enzymol. 1990;185:119–129.
  • Grodberg J, Dunn JJ. OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988;170(3):1245–1253.
  • Chart H, Smith HR, La Ragione RM. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. J Appl Microbiol. 2000;89(6):1048–1058.
  • Kido M, Yamanaka K, Mitani T, et al. RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J Bacteriol. 1996;178(13):3917–3925.
  • Manago MG. Messenger Rna stability and its role in control of Gene expression in Bacteria and Phages. Annu Rev Genet. 1999;33(1):193–227.
  • Lopez PJ, Marchand I, Joyce SA, et al. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol. 1999;33(1):188–199.
  • Makino T, Skretas G, Georgiou G. Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact. 2011;10(1):32.
  • Lobstein J, Emrich CA, Jeans C, et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11(1):753.
  • Samuelson JC. Disulfide-Bonded Protein Production in E. coli. Genet Eng Biotechnol News. 2012;32(3):35.
  • Ren G, Ke N, Berkmen M. Use of the SHuffle Strains in Production of Proteins. Curr Protoc Protein Sci. 2016;85(1):5.26.1–5.26.21. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • Robinson M-P, Ke N, Lobstein J, et al. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. 2015;6(1):8072.
  • Ke N, Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Curr Protoc Mol Biol. 2014;82(1):16.1B.1–16.1B.21. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • Wood DW. New trends and affinity tag designs for recombinant protein purification. Curr Opin Struct Biol. 2014;26:54–61.
  • Kim DS, Kim SW, Song JM, et al. A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol. 2019;19(1):13.
  • da Costa A, Pereira AM, Gomes AC, et al. Production of bioactive hepcidin by recombinant DNA tagging with an elastin-like recombinamer. N Biotechnol. 2018;46:45–53.
  • Gomes AR, Byregowda SM, Veeregowda BM, et al. An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. 2016;4(7):346–356.
  • Maamar H, Dubnau D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol. 2005;56(3):615–624.
  • Wu XC, Lee W, Tran L, et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol. 1991;173(16):4952–4958.
  • Öztürk S, Çalik P, Özdamar TH. Fed-Batch Biomolecule production by Bacillus subtilis: A State of the Art review. Trends Biotechnol. 2016;34(4):329–345.
  • Song Y, Nikoloff JM, Zhang D. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol. 2015;25(7):963–977.
  • Tjalsma H, Haike Antelmann JDHJ, Jongbloed JDH. Proteomics of protein secretion by Bacillus subtilis: separating the “Secrets” of the Secretome. Microbiol Mol Biol Rev. 2004;68(2):207–233.
  • Tjalsma H, Bolhuis A, Jongbloed JDH, et al. Signal Peptide-DEPENDENT PROTEIN TRANSPORT in Bacillus subtilis: a Genome-based survey of the Secretome. Microbiol Mol Biol Rev. 2000;64:515–547.
  • Brockmeier U, Caspers M, Freudl R, et al. Systematic screening of All Signal Peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in Gram-positive Bacteria. J Mol Biol. 2006;362(3):393–402.
  • Fu LL, Xu ZR, Li WF, et al. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv. 2007;25(1):1–12.
  • Yamane K, Bunai K, Kakeshita H. Protein traffic for secretion and related machinery of Bacillus subtilis. Biosci Biotechnol Biochem. 2004;68(10):2007–2023.
  • Kang Z, Yang S, Du G, et al. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol. 2014;41(11):1599–1607.
  • SARVAS M. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta Mol Cell Res. 2004;1694:311–327.
  • Nijland R, Kuipers O. Optimization of Protein Secretion by Bacillus subtilis. Recent Pat Biotechnol. 2008;2(2):79–87.
  • Pohl S, Harwood CR. Heterologous protein secretion by Bacillus species: from the Cradle to the Grave. Adv Appl Microbiol. 2010;75:1–25. 1st ed. Elsevier Inc.
  • Krishnappa L, Dreisbach A, Otto A, et al. Extracytoplasmic Proteases determining the cleavage and release of secreted proteins, Lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res. 2013;12(9):4101–4110. .
  • Manabe K, Kageyama Y, Morimoto T, et al. Combined effect of improved cell yield and Increased specific productivity enhances recombinant enzyme production in Genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol. 2011;77(23):8370–8381. .
  • Morimoto T, Kadoya R, Endo K, et al. Enhanced recombinant protein productivity by Genome reduction in Bacillus subtilis. DNA Res. 2008;15(2):73–81. .
  • He Q, Fu A, Li T. Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis. J Ind Microbiol Biotechnol. 2015;42(4):647–653.
  • Zhang L, Li X, Wei D, et al. Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector. J Ind Microbiol Biotechnol. 2015;42(10):1369–1376.
  • Guoyan Z, Yingfeng A, Zabed HM, et al. Bacillus subtilis spore surface display technology: A review of its development and applications. J Microbiol Biotechnol. 2019;29(2):179–190.
  • van Tilburg AY, Cao H, van der Meulen SB, et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Curr Opin Biotechnol. 2019;59:1–7.
  • Allain T, Mansour NM, Bahr MMA, et al. A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol Lett. 2016;363(13):fnw117. Endo A, editor.
  • Song AA-L, In LLA, Lim SHE, et al. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017;16(1):55.
  • Kunji ERS, Slotboom D-J PB. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta - Biomembr. 2003;1610(1):97–108.
  • Xu Y, Yang L, Li P, et al. Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif. 2019;159:10–16.
  • Corrales-García LL, Serrano-Carreón L, Corzo G. Improving the heterologous expression of human β-defensin 2 (HBD2) using an experimental design. Protein Expr Purif. 2020;167:105539.
  • Wei H, Movahedi A, Xu C, et al. Characterization, expression profiling, and functional analysis of a Populus trichocarpa defensin gene and its potential as an anti-Agrobacterium rooting medium additive. Sci Rep. 2019;9(1):15359.
  • Tian L, Zhang D, Su P, et al. Design, recombinant expression, and antibacterial activity of a novel hybrid magainin–thanatin antimicrobial peptide. Prep Biochem Biotechnol. 2019;49(5):427–434.
  • Kaunietis A, Buivydas A, Čitavičius DJ, et al. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat Commun. 2019;10(1):1115.
  • Huang L, Wang J, Zhong Z, et al. Production of Bioactive Human β-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnol Lett. 2006;28(9):627–632.
  • Feng X, Liu C, Guo J, et al. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl Microbiol Biotechnol. 2012;95(5):1191–1198.
  • Li JF, Zhang J, Zhang Z, et al. SUMO mediating fusion expression of Antimicrobial Peptide CM4 from two joined Genes in Escherichia coli. Curr Microbiol. 2011;62(1):296–300.
  • Li L, Mu L, Wang X, et al. A novel expression vector for the secretion of abaecin in Bacillus subtilis. Brazilian J Microbiol. 2017;48(4):809–814.
  • Ji S, Li W, Baloch AR, et al. Efficient biosynthesis of a Cecropin A-melittin mutant in Bacillus subtilis WB700. Sci Rep. 2017;7(1):40587.
  • Xu J, Zhong F, Zhang Y, et al. Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity. Asian-Australasian J Anim Sci. 2016;30(4):576–584.
  • Chen X, Zhu F, Cao Y, et al. Novel expression vector for secretion of Cecropin AD in Bacillus subtilis with enhanced Antimicrobial activity. Antimicrob Agents Chemother. 2009;53(9):3683–3689. .
  • Geldart K, Borrero J, Kaznessis YN. Chloride-inducible expression vector for delivery of Antimicrobial Peptides targeting Antibiotic-Resistant Enterococcus faecium. Appl Environ Microbiol. 2015;81(11):3889–3897. Elliot MA, editor.
  • Gu W, Xia Q, Yao J, et al. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World J Microbiol Biotechnol. 2015;31(4):557–567.
  • Marti M, Herna PE, Horn N, et al. Production of Pediocin PA-1 by Lactococcus lactis using the Lactococcin A secretory apparatus. Appl Environ Microbiol. 1998;64(3):818–823.
  • Zeng Z, Yu R, Zuo F, et al. Recombinant Lactococcus lactis expressing bioactive exendin-4 to promote insulin secretion and beta-cell proliferation in vitro. Appl Microbiol Biotechnol. 2017;101(19):7177–7186.
  • Schreiber C, Müller H, Birrenbach O, et al. A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fact. 2017;16(1):29.
  • Vieira Gomes A, Souza Carmo T, Silva Carvalho L, et al. Comparison of Yeasts as hosts for recombinant protein production. Microorganisms. 2018;6(2):38.
  • Çelik E, Çalık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–1118.
  • Wagner JM, Alper HS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol. 2016;89:126–136.
  • Wang G, Huang M, Nielsen J. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotechnol. 2017;48:77–84.
  • Baghban R, Farajnia S, Rajabibazl M, et al. Yeast expression systems: overview and recent advances. Mol Biotechnol. 2019;61(5):365–384.
  • Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng. 2018;50:85–108.
  • Nandy SK, Srivastava RK. A review on sustainable yeast biotechnological processes and applications. Microbiol Res. 2018;207:83–90.
  • Chen B, Lee HL, Heng YC, et al. Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv. 2018;36(7):1870–1881.
  • DiMiceli L, Pool V, Kelso JM, et al. Vaccination of yeast sensitive individuals: review of safety data in the US vaccine adverse event reporting system (VAERS). Vaccine. 2006;24(6):703–707.
  • Antoniukas L, Grammel H, Reichl U. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. J Biotechnol. 2006;124(2):347–362.
  • Domínguez A, Fermiñán E, Sánchez M, et al. Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol. 1998;1(2):131–142.
  • Mattanovich D, Branduardi P, Dato L, et al. Recombinant Gene Expression. Lorence A. editor. Totowa, NJ:Humana Press;2012.
  • Cipakova I, Hostinova E. Production of the Human-Beta-Defensin using Saccharomyces cerevisiae as a host. Protein Pept Lett. 2005;12(6):551–554.
  • Schoeman H, Vivier MA, Du Toit M, et al. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast. 1999;15(8):647–656.
  • Van Reenen C, Chikindas M, Van Zyl W, et al. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol. 2003;81(1):29–40.
  • Tabatabaei F, Tanhaeian A, Azghandi M, et al. Microbial Pathogenesis Heterologous expression of Thrombocidin-1 in Pichia pastoris : evaluation of its antibacterial and antioxidant activity. Microb Pthogenes. 2019;127:91–96.
  • Meng D, Zhao J, Ling X, et al. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr Purif. 2017;130:90–99.
  • Chen X, Li J, Sun H, et al. High-level heterologous production and functional secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide Apidaecin. Sci Rep. 2017;7(1):14543.
  • Wang XJ, Wang XM, Teng D, et al. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett Appl Microbiol. 2014;59(1):71–78.
  • Meng D-M, Dai H-X, Gao X-F, et al. Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expr Purif. 2016;127:35–43.
  • Zhou Q, Li M, Cloning XT. Expression of a Clamworm Antimicrobial Peptide Perinerin in Pichia pastoris. Curr Microbiol. 2009;58(4):384–388.
  • Meng D-M, Li W-J, Shi L-Y, et al. Expression, purification and characterization of a recombinant antimicrobial peptide Hispidalin in Pichia pastoris. Protein Expr Purif. 2019;160:19–27.
  • Burrowes O, Diamond G, Lee T. Recombinant Expression of Pleurocidin cDNA using the Pichia pastoris expression system. J Biomed Biotechnol. 2005;2005(4):374–384.
  • Chahardooli M, Niazi A, Aram F, et al. Expression of recombinant Arabian camel lactoferricin-related peptide in Pichia pastoris and its antimicrobial identification. J Sci Food Agric. 2016;96(2):569–575.
  • Janakiraman VN, Cabanne C, Dieryck W, et al. Production and purification of recombinant human hepcidin-25 with authentic N and C-termini. J Biotechnol. 2015;195:89–92.
  • Luiz DP, Almeida JF, Goulart LR, et al. Heterologous expression of abaecin peptide from Apis mellifera in Pichia pastoris. Microb Cell Fact. 2017;16(1):76.
  • NIU M, CHAI S, YOU X, et al. Expression of porcine protegrin-1 in Pichia pastoris and its anticancer activity in vitro. Exp Ther Med. 2015;9(3):1075–1079.
  • Song K, Lee W. Antibacterial activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide secreted from Pichia pastoris. Asian-Australasian J Anim Sci. 2014;27(2):278–283.
  • Naumov GI, Naumova ES, Boundy-Mills KL. Description of Komagataella mondaviorum sp. nov., a new sibling species of Komagataella (Pichia) pastoris. Antonie Van Leeuwenhoek. 2018;111(7):1197–1207.
  • Looser V, Bruhlmann B, Bumbak F, et al. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol Adv. 2015;33(6):1177–1193.
  • Vieira SM, da Rocha SLG, da C Neves-ferreira AG, et al. Heterologous expression of the antimyotoxic protein DM64 in Pichia pastoris. PLoS Negl Trop Dis. 2017;11(7):e0005829. Gutiérrez JM, editor.
  • Capone S, Horvat J, Herwig C, et al. Development of a mixed feed strategy for a recombinant Pichia pastoris strain producing with a de-repression promoter. Microb Cell Fact. 2015;14(1):101.
  • Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317.
  • Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineenring and production. J Mol Recognit. 2005;18(2):119–138.
  • Peng H, Liu H, Chen B, et al. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr Purif. 2012;82(1):37–44.
  • Meng D, Lv Y, Zhao J, et al. Efficient production of a recombinant Venerupis philippinarum defensin (VpDef) in Pichia pastoris and characterization of its antibacterial activity and stability. Protein Expr Purif. 2018;147:78–84.
  • Kuddus R, Rumi F, Tsutsumi M, et al. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr Purif. 2016;122:15–22.
  • Mulder KC, de Lima LA, Aguiar PS, et al. Production of a modified peptide clavanin in Pichia pastoris: cloning, expression, purification and in vitro activities. AMB Express. 2015;5(1):46.
  • Li L, Wang JX, Zhao XF, et al. High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif. 2005;39(2):144–151.
  • Basanta A, Herranz C, Gutierrez J, et al. Development of Bacteriocinogenic Strains of Saccharomyces cerevisiae Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50A and L50B from Enterococcus faecium L50. Appl Environ Microbiol. 2009;75(8):2382–2392.
  • Basanta A, Gómez-Sala B, Sánchez J, et al. Use of the yeast pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from enterococcus faecium L50▽. Appl Environ Microbiol. 2010;76(10):3314–3324.
  • Mao R, Teng D, Wang X, et al. Optimization of expression conditions for a novel NZ2114-derived antimicrobial peptide-MP1102 under the control of the GAP promoter in Pichia pastoris X-33. BMC Microbiol. 2015;15(1):57.
  • Zhang Y, Teng D, Mao R, et al. High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol. 2014;98(2):681–694.
  • Wan J, Li Y, Chen D, et al. Expression of a tandemly arrayed plectasin gene from Pseudoplectania nigrella in Pichia pastoris and its antimicrobial activity. J Microbiol Biotechnol. 2015;26(3):461–468.
  • Zhou Y, Cao W, Wang J, et al. Comparison of Expression of Monomeric and Multimeric Adenoregulin Genes in Escherichia coli and Pichia pastorias. Protein Pept Lett. 2005;12(4):349–355.
  • Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol. 2005;3:119–128.
  • Cregg JM. Pichia Protocols. Springer Science & Business Media 2007, editor. Methods Mol. Biol. Totowa (NJ): Humana Press, 2007. p. 1–271.
  • Margolin E, Chapman R, Williamson AL, et al. Production of complex viral glycoproteins in plants as vaccine immunogens. Plant Biotechnol J. 2018;16(9):1531–1545.
  • da Cunha NB, Cobacho NB, Viana JFC, et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today. 2017;22(2):234–248.
  • Twyman RM, Stoger E, Schillberg S, et al. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003;21(12):570–578.
  • Basaran P, Rodríguez-Cerezo E. Plant Molecular Farming: opportunities and challenges. Crit Rev Biotechnol. 2008;28(3):153–172.
  • Schillberg S, Raven N, Fischer R, et al. Molecular Farming of Pharmaceutical proteins using Plant suspension Cell and tissue cultures. Curr Pharm Des. 2013;19(31):5531–5542.
  • Okamoto M, Mitsuhara I, Ohshima M, et al. Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol. 1998;39(1):57–63.
  • Zakharchenko NS, Rukavtsova EB, Gudkov AT, et al. Enhanced resistance to Phytopathogenic Bacteria in Transgenic Tobacco Plants with synthetic Gene of Antimicrobial Peptide Cecropin P1. Russ J Genet. 2005;41(11):1187–1193.
  • Coca M, Peñas G, Gómez J, et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta. 2006;223(3):392–406.
  • Lico C, Santi L, Twyman RM, et al. The use of plants for the production of therapeutic human peptides. Plant Cell Rep. 2012;31(3):439–451.
  • Abranches R, Marcel S, Arcalis E, et al. Plants as bioreactors: A comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol. 2005;120(1):121–134.
  • Shinmyo A, Kato K. Molecular farming: production of drugs and vaccines in higher plants. J Antibiot. 2010;63(8):431–433.
  • da Cunha NB, Vianna GR, da Almeida Lima T, et al. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnol J. 2014;9(1):39–50.
  • Tschofen M, Knopp D, Hood E, et al. Plant Molecular Farming: much more than Medicines. Annu Rev Anal Chem. 2016;9(1):271–294.
  • Horn ME, Woodard SL, Howard JA. Plant molecular farming: systems and products. Plant Cell Rep. 2004;22(10):711–720.
  • Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv. 2010;28(4):427–435.
  • Huether CM, Lienhart O, Baur A, et al. Glyco-Engineering of Moss lacking Plant-specific sugar residues. Plant Biol. 2005;7(3):292–299.
  • Cunha NB, Murad AM, Cipriano TM, et al. Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 2011;20(4):811–826.
  • Fischer R, Liao Y-C, Hoffmann K, et al. Molecular Farming of Recombinant Antibodies in Plants. Biol Chem. 1999;380(7–8):825–839.
  • Abiri R, Valdiani A, Maziah M, et al. A Critical Review of the Concept of Transgenic Plants: insights into Pharmaceutical Biotechnology and Molecular Farming. Curr Issues Mol Biol. 2016;18:21–42.
  • Jin L, Wang Y, Xu N, et al. Expression and activity analysis of β Gallinacin-3 in Arabidopsis. Protein Expr Purif. 2018;144:1–4.
  • Shams MV, Nazarian-Firouzabadi F, Ismaili A, et al. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum hairy roots with enhanced Antimicrobial activity. Mol Biotechnol. 2019;61(4):241–252.
  • Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol. 2017;38:17–23.
  • Molina A, Hervás-Stubbs S, Daniell H, et al. High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J. 2004;2(2):141–153.
  • Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. Plant Sci. 2012;184:83–101.
  • Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol. 2016;36(5):840–850.
  • Marsian J, Lomonossoff GP. Molecular pharming — vLPs made in plants. Curr Opin Biotechnol. 2016;37:201–206.
  • Xu J, Dolan MC, Medrano G, et al. Green factory: plants as bioproduction platforms for recombinant proteins. In: Biotechnol. Adv. Elsevier Inc. 2012;30:1171–1184.
  • Liu P, Wang Y, Ulrich RG, et al. Leaf-encapsulated vaccines: agroinfiltration and transient expression of the Antigen Staphylococcal Endotoxin B in Radish leaves. J Immunol Res. 2018;2018:1–9.
  • Circelli P, Donini M, Villani ME, et al. Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs. 2010;1(3):221–224.
  • Sheludko Y. Agrobacterium-mediated transient expression as an approach to production of Recombinant proteins in Plants. Recent Pat Biotechnol. 2008;2(3):198–208.
  • Kapila J, De Rycke R, Van Montagu M, et al. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997;122(1):101–108.
  • Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60(5):490–505.
  • Cabral GB, Carneiro VTC, Gomes ACMM, et al. Genetic transformation of Brachiaria brizantha cv. Marandu Biolistics Acad Bras Cienc. 2018;90(2):1789–1797.
  • Anami S, Njuguna E, Coussens G, et al. Higher plant transformation: principles and molecular tools. Int J Dev Biol. 2013;57(6–7–8):483–494.
  • Christie PJ. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol. 1997;179(10):3085–3094.
  • de la Riva GA, Gonzalez-Cabrera J, Vazquez-Padron R, et al. Agrobacterium tumefaciens : a natural tool for plant transformation. Electron. J Biotechnol. 1998;1:113–118.
  • Singh RK, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma. 2016;253(3):691–707.
  • Jha S, Chattoo ÆBB. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 2010;19(3):373–384.
  • Rahnamaeian M, Vilcinskas A. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J Plant Res. 2012;125(1):115–124.
  • Krens FA, Schaart JG, Groenwold R. Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic Res. 2011;20(5):1113–1123.
  • Alpuche-solı G, Garcı AL, Javier DI, et al. A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol Biol. 2012;78(4–5):337–349. .
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–1398.
  • Zhang J. Mammalian Cell culture for Biopharmaceutical Production; In: In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C ZH, editor.  Man. Ind. Microbiol. Biotechnol. Washington (DC): ASM Press;  2010. p . 157–178.
  • Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158–1170.
  • Jazayeri SH, Bahrami S, Gourabi H, et al. Vector and Cell Line Engineering Technologies toward Recombinant protein expression in Mammalian Cell Lines. Appl Biochem Biotechnol. 2018;185(4):986–1003.
  • Liu C-J, Wu L, Meng E, et al. The development of high-throughput Identification and heterologous expression of valuable Peptides/Proteins. Curr Proteomics. 2017;14(1):13–23.
  • Kim JY, Kim YG, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 2012;93(3):917–930.
  • Brown AJ, Kalsi D, Fernandez-Martell A, et al. Expression systems for Recombinant Biopharmaceutical production by Mammalian Cells in Culture. In: Jallal TVJOB, editor. Protein Ther. Sheffield (UK): Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 423–467.
  • Nakamura T, Omasa T. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J Biosci Bioeng. 2015;120(3):323–329.
  • Legastelois I, Buffin S, Peubez I, et al. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccines Immunother. 2017;13(4):947–961.
  • Sharma A, Khoury-christianson AM, White SP, et al. High-efficiency synthesis of human a-endorphin and magainin in the erythrocytes of transgenic mice: A production system for therapeutic peptides. Biochemistry. 1994;91:9337–9341.
  • Zasloff M. Magainlns, a class of Antimicrobial Peptldes from Xenopus Skin: isolation, characterization of two active forms, and partial cDNA sequence of a Precursor. J Occup Environ Med. 1988;30(6):470.
  • Fan B, Li N. Design and synthesis of a Magainin2 fusion protein gene suitable for a mammalian expression system. Transgenic Res. 2008;18(1):99–112.
  • Yarus S, Rosen JM, Cole AM, et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc Natl Acad Sci. 1996;93(24):14118–14121.
  • Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, et al. Antibacterial ACTIVITY OF DEFENSIN PaDef from Avocado Fruit (Persea americana var. drymifolia) expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus. BioMed Res Int. 2013;2013:1–9.
  • Li Q, Huang J, Guo H, et al. Bactericidal activity against meticillin-resistant Staphylococcus aureus of a novel eukaryotic therapeutic recombinant antimicrobial peptide. Int J Antimicrob Agents. 2012;39(6):496–499.
  • Ochoa-Zarzosa A, Loeza-Ángeles H, Sagrero-Cisneros E, et al. Antibacterial activity of thionin Thi2.1 from Arabidopsis thaliana expressed by bovine endothelial cells against Staphylococcus aureus isolates from bovine mastitis. Vet Microbiol. 2008;127(3–4):425–430. .
  • Liu J, Luo Y, Liu Q, et al. Production of cloned embryos from caprine mammary epithelial cells expressing recombinant human β-defensin-3. Theriogenology. 2013;79(4):660–666. .
  • Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128–140.
  • Hacker DL, Wurm FM. Recombinant DNA Technology for Production of Protein Therapeutics in Cultured Mammalian Cells☆. In: Roitberg BD, editor. Ref. Modul. Life Sci. Lausanne (CH): Elsevier Ltd.; 2016. p. 1–7.
  • Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog. 2018;34(6):1407–1426.
  • Hunter M, Yuan P, Vavilala D, et al. Optimization of protein expression in Mammalian Cells. Curr Protoc Protein Sci. 2018;95:1–28.
  • Berger I, Poterszman A. Baculovirus expression: old dog, new tricks. Bioengineered. 2015;6(6):316–322.
  • Brondyk WH. Selecting an appropriate method for expressing a Recombinant protein. In: Richard R. Burgess MPD, editor. Guid. to Protein Purif. Massachusetts (USA):   Academic Press; 2009. p. 131–147.
  • Van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol. 2015;96(1):6–23.
  • Almasia NI, Molinari MP, Maroniche GA, et al. Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnol. 2017;17(1):75.
  • Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. 1983;3(12):2156–2165.
  • Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol. 2005;23(5):567–575.
  • Fabrick JA, Hull JJ. Transient expression and cellular localization of recombinant proteins in cultured insect cells. J Vis Exp. 2017;2017:1–8.
  • Rohrmann GF. Baculovirus Molecular Biology. Bethesda: National Library of Medicine (US) NC for BI, editor. Corvallis (OR): [Publisher unknown]; 2013.p. 1-211.
  • Jarvis DL. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology. 2003;310(1):1–7.
  • Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol. 2015;16(12):742–752.
  • Thomas A. Kost and Christopher W. Kemp. Fundamentals of Baculovirus Expression and Applications. In: Vega MC, editor. Adv. Technol. Protein Complex Prod. Charact. Cham: Springer, Cham; 2016. p. 199–215.
  • Bin Abid N, Yoon G, Kim MO. Molecular cloning and expression of Osmotin in a Baculovirus-Insect System: purified Osmotin MITIGATES Amyloid-beta deposition in Neuronal Cells. Sci Rep. 2017;7(1):8147.
  • Vaughn JL, Goodwin RH, Tompkins GJ, et al. The establishment of two cell lines from the insectspodoptera frugiperda (lepidoptera; noctuidae). In Vitro. 1977;13(4):213–217.
  • Bleckmann M, Schürig M, Chen FF, et al. Identification of essential genetic baculoviral elements for recombinant protein expression by transactivation in Sf21 insect cells. PLoS One. 2016;11(3):1–19.
  • Wickham TJ, Davis T, Granados RR, et al. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog. 1992;8(5):391–396.
  • Davis TR, Trotter KM, Granados RR, et al. Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Biotechnology (N Y). 1992;10(10):1148–1150.
  • Zitzmann J, Weidner T, Czermak P. Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology. 2017;69(2):371–389.
  • Schwarzer D, Finking R, Marahiel MA. Nonribosomal peptides: from genes to products. Nat Prod Rep. 2003;20(3):275.
  • Finking R, Marahiel MA. Biosynthesis of Nonribosomal Peptides. Annu Rev Microbiol. 2004;58(1):453–488.
  • Strieker M, Tanović A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20(2):234–240.
  • Yang X, Yousef AE. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol. 2018;34(4):57.
  • Arbeit RD, Maki D, Tally FP, et al. The Safety and Efficacy of Daptomycin for the Treatment of Complicated Skin and Skin-Structure Infections. Clin Infect Dis. 2004;38(12):1673–1681.
  • Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem. 2010;285(36):27501–27508.
  • Baltz RH, Brian P, Miao V, et al. Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol. 2006;33(2):66–74.
  • Martin NI, Hu H, Moake MM, et al. Isolation, structural characterization, and properties of Mattacin (Polymyxin M), a cyclic Peptide Antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003;278(15):13124–13132.
  • Tambadou F, Caradec T, Gagez A-L, et al. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch Microbiol. 2015;197(4):521–532.
  • Wohlleben W, Keller U, Pfennig F, et al. Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology. 2002;148(4):1105–1118.
  • Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clin Microbiol Infect. 2006;12(4):315–321.
  • Roberts KD, Azad MAK, Wang J, et al. Antimicrobial Activity and Toxicity of the Major Lipopeptide Components of Polymyxin B and Colistin: last-Line Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect Dis. 2015;1(11):568–575.
  • Schneider T, Müller A, Miess H, et al. Cyclic lipopeptides as antibacterial agents – potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol. 2014;304(1):37–43.
  • Qian C-D, Wu X-C, Teng Y, et al. Battacin (Octapeptin B5), a new cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis active against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob Agents Chemother. 2012;56(3):1458–1465.
  • Velkov T, Thompson PE, Nation RL, et al. Structure−Activity relationships of Polymyxin Antibiotics. J Med Chem. 2010;53(5):1898–1916.
  • Costa RA, Ortega DB, DLA F, et al. Checkerboard testing method indicates synergic effect of pelgipeptins against multidrug resistant Klebsiella pneumoniae. Biotechnol Res Innov. 2019;3(1):187–191.
  • Ding R, Wu XC, Qian CD, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49(6):942–949.
  • Bratu S, Tolaney P, Karumudi U, et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother. 2005;56(1):128–132.
  • Tally FP, DeBruin MF. Development of daptomycin for Gram-positive infections. J Antimicrob Chemother. 2000;46(4):523–526.
  • Rand KH, Houck H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J Antimicrob Chemother. 2004;53(3):530–532.
  • Qi G, Zhu F, Du P, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31(11):1978–1986.
  • Zhang B, Dong C, Shang Q, et al. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochim Biophys Acta - Biomembr. 2013;1828(9):2230–2237.
  • Ongley SE, Bian X, Neilan BA, et al. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep. 2013;30(8):1121.
  • Watanabe K, Hotta K, Nakaya M, et al. Escherichia coli allows efficient modular incorporation of newly isolated Quinomycin Biosynthetic Enzyme into Echinomycin Biosynthetic pathway for rational design and synthesis of potent Antibiotic unnatural natural product. J Am Chem Soc. 2009;131(26):9347–9353.
  • Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci U S A. 2002;99(22):14002–14007.
  • Rackham EJ, Grüschow S, Ragab AE, et al. Pacidamycin Biosynthesis: identification and heterologous expression of the first uridyl Peptide Antibiotic Gene cluster. ChemBioChem. 2010;11(12):1700–1709.
  • Li J, Neubauer P. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. N Biotechnol. 2014;31(6):579–585.
  • Watanabe K, Oguri H, Oikawa H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Curr Opin Chem Biol. 2009;13(2):189–196.
  • Li J, Jaitzig J, Lu P, et al. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microb Cell Fact. 2015;14(1):83.
  • Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A. 2010;107(6):2646–2651.
  • Anyaogu DC, Mortensen UH. Heterologous production of fungal secondary metabolites in Aspergilli. Front Microbiol. 2015;6:77.
  • Kim JH, Feng Z, Bauer JD, et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers. 2010;93(9):833–844.
  • Nah H-J, Pyeon H-R, Kang S-H, et al. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces species. Front Microbiol. 2017;8:394.
  • Yamanaka K, Reynolds KA, Kersten RD, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. PNAS. 2014;111(5):1957–1962.
  • Mankelow DP, Neilan BA. Non-ribosomal peptide antibiotics. Expert Opin Ther Pat. 2000;10(10):1583–1591.
  • Nguyen KT, Ritz D, Gu J-Q, et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proceedings of the National Academy of Sciences. 2006;103(46):17462–17467.
  • Alexander DC, Rock J, He X, et al. Development of a Genetic system for combinatorial Biosynthesis of Lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 Biosynthesis Gene cluster. Appl Environ Microbiol. 2010;76(20):6877–6887.
  • Zhang G, Zhang H, Li S, et al. Characterization of the Amicetin Biosynthesis Gene Cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for Amide Bond formation. Appl Environ Microbiol. 2012;78(7):2393–2401.
  • Pogorevc D, Tang Y, Hoffmann M, et al. Biosynthesis and heterologous production of Argyrins. ACS Synth Biol. 2019;8(5):1121–1133.
  • Eppelmann K, Doekel S, Marahiel MA. Engineered Biosynthesis of the Peptide Antibiotic Bacitracin in the surrogate host Bacillus subtilis. J Biol Chem. 2001;276(37):34824–34831.
  • Álvarez-Álvarez R, Martínez-Burgo Y, Pérez-Redondo R, et al. Expression of the endogenous and heterologous clavulanic acid cluster in Streptomyces flavogriseus: why a silent cluster is sleeping. Appl Microbiol Biotechnol. 2013;97(21):9451–9463.
  • Juguet M, Lautru S, Francou F-X, et al. An iterative nonribosomal peptide synthetase assembles the Pyrrole-Amide Antibiotic Congocidine in Streptomyces ambofaciens. Chem Biol. 2009;16(4):421–431. .
  • Zobel S, Kumpfmüller J, Süssmuth RD, et al. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol. 2015;99(2):681–691.
  • Choi S-K, Park S-Y, Kim R, et al. Identification of a Polymyxin synthetase Gene cluster of Paenibacillus polymyxa and heterologous expression of the Gene in Bacillus subtilis. J Bacteriol. 2009;191:3350–3358.
  • Li J, Jaitzig J, Hillig F, et al. Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Appl Microbiol Biotechnol. 2014;98:591–601.
  • Miao V, Coëffet-LeGal M-F, Brian P. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology. 2005;151(5):1507–1523.
  • Penn J, Li X, Whiting A, et al. Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol. 2006;33(2):121–128.
  • Owczarek B, Gerszberg A, Hnatuszko-Konka K. A brief reminder of systems of production and chromatography-based recovery of Recombinant protein Biopharmaceuticals. BioMed Res Int. 2019;2019:1-13.
  • Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr Purif. 2011;80:260–267.
  • Holaskova E, Galuszka P, Frebort I, et al. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv. 2015;33:1005–1023.
  • Song X, Wang J, Wu F, et al. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Mol Biol. 2005;57:13–20.
  • Sang M, Wei H, Zhang J, et al. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2017;140:44–51.
  • Zhang J, Yang Y, Teng D, et al. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif. 2011;78(2):189–196.
  • Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115:113–128.
  • Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4:1–8.
  • Cao W, Zhou Y, Ma Y, et al. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli. Protein Expr Purif. 2005;40:404–410.
  • Wu J, Wang C, He H, et al. Molecular analysis and recombinant expression of bovine neutrophil β-defensin 12 and its antimicrobial activity. Mol Biol Rep. 2011;38:429–436.
  • Canales J, Avila C, Cánovas FM. A maritime pine antimicrobial peptide involved in ammonium nutrition. Plant Cell Environ. 2011;34:1443–1453.
  • Feng X, Xu W, Qu P, et al. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli. Biotechnol Prog. 2015;31:369–374.
  • Panteleev PV, Ovchinnikova TV. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem. 2017;64(1):35–42.
  • Tavares LS, Rettore JV, Freitas RM, et al. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides. 2012;37:294–300.
  • Costa S, Almeida A, Castro A, et al. Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol. 2014;5:1–20.
  • LaVallie ER, DiBlasio EA, Kovacic S, et al. A thioredoxin gene fusion expression system that cirformation in the E. coli cytoplasm. Bio/Technology. 1993;11:187–193.
  • Chen X, Shi J, Chen R, et al. Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem. 2015;62:606–614.
  • Che Y, Lu Y, Zha X, et al. Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13. Protein Expr Purif. 2016;119:45–50.
  • Meng F, Zhao H, Zhang C, et al. Expression of a novel bacteriocin - The plantaricin Pln1 - in Escherichia coli and its functional analysis. Protein Expr Purif. 2016;119:85–93.
  • Vu TTTR, Jeong B, Yu J, et al. Soluble prokaryotic expression and purification of crotamine using an N-terminal maltose-binding protein tag. Toxicon. 2014;92:157–165.
  • Song D, Chen Y, Li X, et al. Heterologous expression and purification of dermaseptin S4 fusion in Escherichia coli and recovery of biological activity. Prep Biochem Biotechnol. 2014;44:598–607.
  • Luo X, Zhu W, Ding L, et al. Bldesin, the first functionally characterized pathogenic fungus defensin with Kv1.3 channel and chymotrypsin inhibitory activities. J Biochem Mol Toxicol. 2019;33:1–8.
  • Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif. 2005;43:1–9.
  • Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802–805. (80-.)
  • Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods. 2001;49:335–360.
  • Lin CH, Pan YC, Liu FW, et al. Prokaryotic expression and action mechanism of antimicrobial LsGRP1 C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl Microbiol Biotechnol. 2017;101:8129–8138.
  • Wei X, Wu R, Zhang L, et al. Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules. 2018;23:1-12.
  • Torres MDT, Sothiselvam S, Lu TK, et al. Peptide design principles for Antimicrobial applications. J Mol Biol. 2019;431:3547–3567.
  • Ramamourthy G, Arias M, Nguyen LT, et al. Expression and purification of Chemokine MIP-3α (CCL20) through a Calmodulin-fusion protein system. Microorganisms. 2019;7:8.
  • Hoffmann D, Eckhardt D, Gerlach D, et al. Downstream processing of Cry4AaCter-induced inclusion bodies containing insect-derived antimicrobial peptides produced in Escherichia coli. Protein Expr Purif. 2019;155:120–129.
  • Hayakawa T, Sato S, Iwamoto S, et al. Novel strategy for protein production using a peptide tag derived from Bacillus thuringiensis Cry4Aa. Febs J. 2010;277:2883–2891.
  • Marblestone JG. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci. 2006;15:182–189.
  • Il CS, Song HW, Moon JW, et al. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology. Biotechnol Bioeng. 2001;75:718–724.
  • Jenny RJ, Mann KG, Lundblad RL. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif. 2003;31:1–11.
  • Kapust RB, Tözsér J, Fox JD, et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng Des Sel. 2001;14:993–1000.
  • Kant P, Liu WZ, Pauls KP. PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Peptides. 2009;30:1593–1599.
  • Oi WL, Chong JPC, Yandle TG, et al. Preparation of recombinant thioredoxin fused N-terminal proCNP: analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr Purif. 2005;41:332–340.
  • Zhu S, Gao B, Aumelas A, et al. MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochim Biophys Acta. 2010;1804:872–883.
  • Chen Z, Han S, Cao Z, et al. Fusion expression and purification of four disulfide-rich peptides reveals enterokinase secondary cleavage sites in animal toxins. Peptides. 2013;39:145–151.
  • Tao Y, Zhao D-M WY. Expression, purification and antibacterial activity of the channel catfish hepcidin mature peptide. Protein Expr Purif. 2014;94:73–78.
  • Parks TD, Leuther KK, Howard ED, et al. Release of proteins and Peptides from fusion proteins using a Recombinant Plant virus Proteinase. Anal Biochem. 1994;216:413–417.
  • Malakhov MP, Mattern MR, Malakhova OA, et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics. 2004;5:75–86.
  • Smith BJ. Chemical Cleavage of Proteins. In: Walker JM, editor. New Protein Tech. Slough (UK): Humana Press; 1988. p. 71–88.
  • Nolde SB, Vassilevski AA, Rogozhin EA, et al. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem. 2011;286:25145–25153.
  • Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–D1093.
  • Callaway JE, Lai J, Haselbeck B, et al. Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob Agents Chemother. 1993;37:1614–1619.
  • Tomita T, Mizumachi Y, Chong K, et al. Protein sequence analysis, cloning, and expression of Flammutoxin, a pore-forming Cytolysin from Flammulina velutipes. J Biol Chem. 2004;279:54161–54172.
  • Tian ZG, Dong TT, Yang YL, et al. Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol. 2009;83:143–149.
  • Fletcher EE, Yan D, Kosiba AA, et al. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr Purif. 2019;153:114–120.
  • Yang X, Pistolozzi M, Lin Z. New trends in aggregating tags for therapeutic protein purification. Biotechnol Lett. 2018;40:745–753.
  • Urry DW. Protein elasticity based on conformations of sequential polypeptides: the biological elastic fiber. J Protein Chem. 1984;3:403–436.
  • da Costa A, Machado R, Ribeiro A, et al. Development of Elastin-like Recombinamer Films with Antimicrobial activity. Biomacromolecules. 2015;16:625–635.
  • da Costa A, Pereira AM, Gomes AC, et al. Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomed Mater. 2017;12:045011.
  • Sousa DA, Mulder KCL, Nobre KS, et al. Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol. 2016;234:83–89.
  • MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release. 2014;190:314–330.
  • Gogarten JP, Senejani AG, Zhaxybayeva O, et al. Inteins: structure, function, and evolution. Annu Rev Microbiol. 2002;56:263–287.
  • Shen Y, Ai HX, Song R, et al. Expression and purification of moricin CM4 and human Β-defensins 4 in Escherichia coli using a new technology. Microbiol Res. 2010;165:713–718.
  • Zhao C-X, Dwyer MD, Yu AL, et al. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol Bioeng. 2015;112:957–964.
  • Dimitrijev Dwyer M, Brech M, Yu L, et al. Intensified expression and purification of a recombinant biosurfactant protein. Chem Eng Sci. 2014;105:12–21.
  • Sun B, Wibowo D, Sainsbury F, et al. Design and production of a novel antimicrobial fusion protein in Escherichia coli. Appl Microbiol Biotechnol. 2018;102:8763–8772.
  • Sun B, Wibowo D, Middelberg APJ, et al. Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express. 2018;8:6.
  • Costa F, Teixeira C, Gomes P, et al. Clinical application of AMPs.  In: Matsuzaki K, editor. Antimicrob. Pept. Springer, Singapore; 2019;1117:281–298.
  • Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol. 2013;31:379–382.
  • Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial Peptides : an emerging category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6:1–12.
  • Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–276.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–2707.
  • Qvit N, Rubin SJS, Urban TJ, et al. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today. 2017;22:454–462.
  • Rajchakit U, Sarojini V. Recent developments in Antimicrobial-Peptide-conjugated Gold nanoparticles. Bioconjug Chem. 2017;28:2673–2686.
  • Scorciapino MA, Serra I, Manzo G, et al. Antimicrobial dendrimeric peptides: structure, activity and new therapeutic applications. Int J Mol Sci. 2017;18:1-13.
  • Collins JJ, Koeris M, Lu TK, et al. (12) Patent Application Publication (10) Pub. No.: US 2015/0050717 A1. United State of America; 2015. p. 248.
  • Rai A, Pinto S, Evangelista MB, et al. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater. 2016;33:64–77.
  • Rai A, Pinto S, Velho TR, et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials. 2016;85:99–110.
  • Divyashree M, Mani MK, Reddy D, et al. Clinical applications of Antimicrobial Peptides (AMPs): where do we stand now? Protein Pept Lett. 2019;27:120–134.
  • van der Velden WJFM, van Iersel TMP, Blijlevens NMA, et al. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med. 2009;7:44.
  • Phase 1 Clinical trial of NPI-0052 in Patients with advanced solid Tumor malignancies or refractory Lymphoma [Internet]. ClinicalTrials.gov. 2006 [ cited 2020 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT00396864?term=marizomib&draw=2&rank=7.
  • Kaplan CW, Sim JH, Shah KR, et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother. 2011;55:3446–3452.
  • Zhang W, Li Y, Qian G, et al. Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob Agents Chemother. 2011;55:5581–5589.
  • Crowther GS, Baines SD, Todhunter SL, et al. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J Antimicrob Chemother. 2013;68:168–176.
  • Knight-Connoni V, Mascio C, Chesnel L, et al. Discovery and development of surotomycin for the treatment of Clostridium difficile. J Ind Microbiol Biotechnol. 2016;43:195–204.
  • Pexiganan versus Placebo control for the treatment of mild infections of Diabetic Foot Ulcers (OneStep-2). ClinicalTrials.gov. 2012 [ cited 2020 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01594762?term=pexiganan&draw=2&rank=1.
  • Efficacy study of DiaPep277 in newly diagnosed Type 1 Diabetes Patients (DIA-AID). ClinicalTrials.gov. 2008 [ cited 2020 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT00615264?term=Diapep277&draw=2&rank=4.
  • Molchanova N, Hansen PR, Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22:1–60.
  • Pharmacokinetics, safety and efficacy of POL7080 in Patients with ventilator associated Pseudomonas Aeruginosa Pneumonia. ClinicalTrials.gov. 2014 [ cited 2020 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02096328?term=pol7080&rank=1.
  • Phase III Efficacy and safety study of AB103 in the Treatment of Patients with necrotizing soft tissue infections (ACCUTE). ClinicalTrials.gov. 2015 [ cited 2020 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02469857?term=p2TA&rank=1.
  • Ghobrial OG, Derendorf H, Hillman JD. Pharmacodynamic activity of the lantibiotic MU1140. Int J Antimicrob Agents. 2009;33:70–74.
  • Grönberg A, Mahlapuu M, Ståhle M, et al. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen. 2014;22:613–621.
  • Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: back to the Future? J. Med Chem. 2018;61:1382–1414.
  • Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–163.
  • Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.