345
Views
12
CrossRef citations to date
0
Altmetric
Review

The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics

, , , , &
Pages 239-248 | Received 11 Jul 2020, Accepted 18 Jan 2021, Published online: 31 Jan 2021

References

  • X-d ME, Cao Y-F, Che -Y-Y, et al. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med. 2019;17(1):59–80.
  • Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin. 2018;39(5):802–824.
  • Chen W, Chen G. Danshen (salvia miltiorrhiza bunge): a prospective healing sage for cardiovascular diseases. Curr Pharm Des. 2017;23(34):5125–5135. .
  • Zhang Y, Jiang P, Ye M, et al. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 2012;13(10):13621–13666.
  • Ying Q, Teng Y, Zhang J, et al. Therapeutic effect of tanshinone iia on liver fibrosis and the possible mechanism: a preclinical meta-analysis. Evid Based Complement Alternat Med. 2019;2019:7514046. .
  • Zhou ZY, Zhao WR, Zhang J, et al. Sodium tanshinone IIA sulfonate: a review of pharmacological activity and pharmacokinetics. Biomed Pharmacothe. 2019;118:109362. .
  • Luo C, Xu X, Wei X, et al. Natural medicines for the treatment of fatigue: bioactive components, pharmacology, and mechanisms. Pharmacol Res. 2019;148:104409.
  • Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 - September 2012). Expert Opin Ther Pat. 2013;23(1):19–29.
  • Qin WW, Wang L, Jiao Z, et al. Lower clearance of sodium tanshinone IIA sulfonate in coronary heart disease patients and the effect of total bilirubin: a population pharmacokinetics analysis. Chin J Nat Med. 2019;17(3):218–226.
  • Kruger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20(18):4411.
  • van Hinsbergh VW. Endothelium–role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34(1):93–106.
  • Gudmundsdottir IJ, Lang NN, Boon NA, et al. Role of the endothelium in the vascular effects of the thrombin receptor (protease-activated receptor type 1) in humans. J Am Coll Cardiol. 2008;51(18):1749–1756.
  • Boucher P, Matz RL, Terrand J. atherosclerosis: gone with the wnt? Atherosclerosis. 2020;301:15–22.
  • Yang D, Yang Z, Chen L, et al. Dihydromyricetin increases endothelial nitric oxide production and inhibits atherosclerosis through microRNA-21 in apolipoprotein E-deficient mice. J Cell Mol Med. 2020;24(10):5911-5925.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. 2015;214(1):33–50.
  • Badimon L, Padro T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012;1(1):60–74.
  • Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem. 2019;26(9):1693–1700.
  • Toda N, Nakanishi-Toda M. How mental stress affects endothelial function. Pflugers Arch. 2011;462(6):779–794.
  • Shah P, Khaleel M, Thuptimdang W, et al. Mental stress causes vasoconstriction in subjects with sickle cell disease and in normal controls. Haematologica. 2020;105(1):83–90.
  • Hahad O, Prochaska JH, Daiber A, et al. Effects on stress hormones, oxidative stress, and vascular dysfunction: key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxid Med Cell Longev. 2019;2019:4623109.
  • Daiber A, Kroller-Schon S, Oelze M, et al. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biol. 2020;34:101506.
  • Munzel T, Sorensen M, Schmidt F, et al. The adverse effects of environmental noise exposure on oxidative stress and cardiovascular risk. Antioxid Redox Signal. 2018;28(9):873–908.
  • Dhananjayan R, Koundinya KS, Malati T, et al. Endothelial dysfunction in type 2 diabetes mellitus. Indian J Clin Biochem. 2016;31(4):372–379.
  • Potenza MA, Gagliardi S, Nacci C, et al. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16(1):94–112. .
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23Suppl 1):III27–32.
  • Larose E, Ganz P. Statins and endothelial dysfunction. Semin Vasc Med. 2004;4(4):333–346.
  • Ren J, Fu L, Nile SH, et al. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol. 2019;10(753). DOI:10.3389/fphar.2019.00753
  • Zhang GX, Zhang YY, Zhang XX, et al. Different network pharmacology mechanisms of Danshen-based Fangjis in the treatment of stable angina. Acta Pharmacol Sin. 2018;39(6):952–960.
  • Gao S, Liu Z, Li H, et al. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis. 2012;220(1):3–10.
  • Adams JD, Wang R, Yang J, et al. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin Med. 2006;1(1):3.
  • Chan P, Chen YC, Lin LJ, et al. Tanshinone IIA Attenuates H(2)O(2) -induced injury in human umbilical vein endothelial cells. Am J Chin Med. 2012;40(6):1307–1319.
  • Bi X, Zhang K, He L, et al. Synthesis and biological evaluation of tanshinone IIA derivatives as novel endothelial protective agents. Future Med Chem. 2017;9(10):1073–1085.
  • Yang JX, Pan YY, Ge JH, et al. Tanshinone II A attenuates TNF-alpha-induced expression of VCAM-1 and ICAM-1 in endothelial progenitor cells by blocking activation of NF-kappaB. Cell Physiol Biochem. 2016;40(1–2):195–206.
  • Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. Faseb J. 2018;32(8):4070–4084.
  • Chen L, Guo QH, Chang Y, et al. Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology. 2017;31: 47–53.
  • Li YH, Xu Q, Xu WH, et al. Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim Biophys Acta. 2015;1850(4):813–823.
  • Zhou ZW, Xie XL, Zhou SF, et al. Mechanism of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EA.hy926. Eur J Pharmacol. 2012;697(1–3):97–105.
  • Chen F, Li H, Zhu G, et al. Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model. Mol Med Rep. 2017;16(1):87–94.
  • Xu RH, Liu B, Wu JD, et al. miR-143 is involved in endothelial cell dysfunction through suppression of glycolysis and correlated with atherosclerotic plaques formation. Eur Rev Med Pharmacol Sci. 2016;20(19):4063–4071.
  • Huang R, Hu Z, Cao Y, et al. MiR-652-3p inhibition enhances endothelial repair and reduces atherosclerosis by promoting Cyclin D2 expression. EBioMedicine. 2019;40:685–694.
  • Lu M, Luo Y, Hu P, et al. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling. Iran J Basic Med Sci. 2018;21(1):83–88.
  • Wu WY, Yan H, Wang XB, et al. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase. PloS One. 2014;9(4):e94957.
  • Wang B, Ge Z, Cheng Z, et al. IIA suppresses the progression of atherosclerosis by inhibiting the apoptosis of vascular smooth muscle cells and the proliferation and migration of macrophages induced by ox-LDL. Biol Open. 2017;6(4):489–495.
  • Meng ZJ, Wang C, Meng LT, et al. Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis. Chin J Nat Med. 2018;16(11):846–855.
  • Wei B, Li WW, Ji J, et al. The cardioprotective effect of sodium tanshinone IIA sulfonate and the optimizing of therapeutic time window in myocardial ischemia/reperfusion injury in rats. Atherosclerosis. 2014;235(2):318–327.
  • Yan SH, Zhao NW, Geng ZR, et al. Modulations of keap1-nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med. 2018;115:191–201.
  • Grobe AC, Wells SM, Benavidez E, et al. Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1069–77.
  • Harper E, Rochfort KD, Smith D, et al. RANKL treatment of vascular endothelial cells leading to paracrine pro-calcific signaling involves ROS production. Mol Cell Biochem. 2020;464(1–2):111–117.
  • Jaganjac M, Cipak A, Schaur RJ, et al. Pathophysiology of neutrophil-mediated extracellular redox reactions. Front Biosci (Landmark Ed). 2016;21(4):839–855.
  • Vallet B, Wiel E. Endothelial cell dysfunction and coagulation. Crit Care Med. 2001;29(7Suppl):S36–41.
  • Jiang Z, Gao W, Tanshinones HL. Critical pharmacological components in salvia miltiorrhiza. Front Pharmacol. 2019;10:202.
  • Ma XH, Ma Y, Tang JF, et al. The biosynthetic pathways of tanshinones and phenolic acids in salvia miltiorrhiza. Molecules. 2015;20(9):16235–16254.
  • Yang L, Zou XJ, Gao X, et al. Sodium tanshinone IIA sulfonate attenuates angiotensin II-induced collagen type I expression in cardiac fibroblasts in vitro. Exp Mol Med. 2009;41(7):508–516.
  • Wang P, Zhou S, Xu L, et al. Hydrogen peroxide-mediated oxidative stress and collagen synthesis in cardiac fibroblasts: blockade by tanshinone IIA. J Ethnopharmacol. 2013;145(1):152–161.
  • Wang P, Wu X, Bao Y, et al. Tanshinone IIA prevents cardiac remodeling through attenuating NAD (P)H oxidase-derived reactive oxygen species production in hypertensive rats. Pharmazie. 2011;66(7):517–524.
  • Agarwal B, Dash RK, Stowe DF, et al. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochim Biophys Acta. 2014;1837(3):354–365.
  • Zhou G, Jiang W, Zhao Y, et al. Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria. Biochem Pharmacol. 2003;65(1):51–57.
  • Dong K, Xu W, Yang J, et al. Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res. 2009;23(5):608–613.
  • Tong W, Guo J, Tanshinone YC. II A enhances prypotosis and represses cell proliferation of Hela cells by regulating miR-145/GSDMD signaling pathway. Biosci Rep. 2020. DOI:10.1042/BSR20200259
  • Zhou ZY, Huang B, Li S, et al. Sodium tanshinone IIA sulfonate promotes endothelial integrity via regulating VE-cadherin dynamics and RhoA/ROCK-mediated cellular contractility and prevents atorvastatin-induced intracerebral hemorrhage in zebrafish. Toxicol Appl Pharmacol. 2018;350:32–42.
  • Qian C, Ren Y, Xia Y. Sodium tanshinone IIA sulfonate attenuates hemorrhagic shock-induced organ damages by nuclear factor-kappa B pathway. J Surg Res. 2017;209:145–152.
  • Zhu S, Wei W, Liu Z, et al. TanshinoneIIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NFkappaB signaling pathway. Mol Med Rep. 2018;17(5):6969–6976.
  • Zhong L, Ding W, Zeng Q, et al. Sodium tanshinone IIA sulfonate attenuates erectile dysfunction in rats with hyperlipidemia. Oxid Med Cell Longev. 2020;2020:7286958.
  • Yin CF, Kao SC, Hsu CL, et al. Phosphoproteome analysis reveals dynamic heat shock protein 27 phosphorylation in tanshinone IIA-induced cell death. J Proteome Res. 2020;19(4):1620–1634.
  • Dong DL, Bai YL, Cai BZ. Calcium-activated potassium channels: potential target for cardiovascular diseases. Adv Protein Chem Struct Biol. 2016;104:233–261.
  • Blum-Johnston C, Thorpe RB, Wee C, et al. Long-term hypoxia uncouples Ca(2+) and eNOS in bradykinin-mediated pulmonary arterial relaxation. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R870–R82.
  • Wilson C, Zhang X, Buckley C, et al. Increased vascular contractility in hypertension results from impaired endothelial calcium signaling. Hypertension. 2019;74(5):1200–1214.
  • Wei R, Lunn SE, Tam R, et al. Vasoconstrictor stimulus determines the functional contribution of myoendothelial feedback to mesenteric arterial tone. J Physiol. 2018;596(7):1181–1197.
  • Kerr PM, Wei R, Tam R, et al. Activation of endothelial IKCa channels underlies NO-dependent myoendothelial feedback. Vascul Pharmacol. 2015;74:130–138.
  • Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: new insights into cellular physiology and cardiovascular function. Microcirculation. 2017;24(3):e12328.
  • Coleman HA, Tare M, Parkington HC. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol. 2004;31(9):641–649.
  • Tan X, Yang Y, Cheng J, et al. Unique action of sodium tanshinone II-A sulfonate (DS-201) on the Ca(2+) dependent BK(Ca) activation in mouse cerebral arterial smooth muscle cells. Eur J Pharmacol. 2011;656(1–3):27–32.
  • Yang Y, Cai F, Li PY, et al. Activation of high conductance Ca(2+)-activated K(+) channels by sodium tanshinoneII-A sulfonate (DS-201) in porcine coronary artery smooth muscle cells. Eur J Pharmacol. 2008;598(1–3):9–15.
  • Zheng L, Liu M, Wei M, et al. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents. Respir Physiol Neurobiol. 2015;205:120–128.
  • Xie XY, Zhang B, Li JH, et al. Sodium tanshinone iia sulfonate attenuates seawater aspiration-induced acute pulmonary edema by up-regulating Na(+),K(+)-ATPase activity. Exp Lung Res. 2011;37(8):482–491.
  • Yu W, Jin H, Tang C, et al. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol. 2018;175(8):1114–1125.
  • Zhang YL, Xu JW, Wu XH, et al. Relaxant effect of sodium tanshinone iia sulphonate on mouse tracheal smooth muscle. Planta Med. 2017;83(7):624–630.
  • Xie MJ, Ma YG, Gao F, et al. Activation of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats. Am J Physiol Cell Physiol. 2010;298(6):C1489–500.
  • Zhang J, Li M, Song M, et al. Clic1 plays a role in mouse hepatocarcinoma via modulating Annexin A7 and Gelsolin in vitro and in vivo. Biomed Pharmacothe. 2015;69:416–419.
  • Chen PX, Zhang YL, Xu JW, et al. Sodium tanshinone IIA sulfonate stimulated Cl- secretion in mouse trachea. PloS One. 2017;12(5):e0178226.
  • Zhu J, Xu Y, Ren G, et al. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol. 2017;815:427–436.
  • Cao Y, Gong Y, Liu L, et al. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol. 2017;37(12):1359–1369.
  • Zhao M, Feng Y, Xiao J, et al. Sodium tanshinone IIA sulfonate prevents hypoxic trophoblast-induced endothelial cell dysfunction via targeting HMGB1 release. J Biochem Mol Toxicol. 2017;31(7).
  • Li FQ, Zeng DK, Jia CL, et al. The effects of sodium tanshinone IIa sulfonate pretreatment on high glucose-induced expression of fractalkine and apoptosis in human umbilical vein endothelial cells. Int J Clin Exp Med. 2015;8(4):5279–5286.
  • Long R, You Y, Li W, et al. Sodium tanshinone IIA sulfonate ameliorates experimental coronary no-reflow phenomenon through down-regulation of FGL2. Life Sci. 2015;142:8–18.
  • Cheng J, Chen T, Li P, et al. Sodium tanshinone IIA sulfonate prevents lipopolysaccharide-induced inflammation via suppressing nuclear factor-kappaB signaling pathway in human umbilical vein endothelial cells. Can J Physiol Pharmacol. 2018;96(1):26–31.
  • Olea FD, Vera Janavel G, Cuniberti L, et al. Repeated, but not single, VEGF gene transfer affords protection against ischemic muscle lesions in rabbits with hindlimb ischemia. Gene Ther. 2009;16(6):716–723.
  • Signorelli SS, Vanella L, Abraham NG, et al. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis. 2020;11:2040622319894466.
  • Fuentes E, Gibbins JM, Holbrook LM, et al. NADPH oxidase 2 (NOX2): a key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc Med. 2018;28(7):429–434.
  • Olea FD, Locatelli P, Hnatiuk A, et al. Vascular endothelial growth factor overexpression does not enhance adipose stromal cell-induced protection on muscle damage in critical limb ischemia. Arterioscler Thromb Vasc Biol. 2015;35(1):184–188.
  • Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res. 2000;86(12):1198–1202.
  • Baumgartner I. Therapeutic angiogenesis: theoretic problems using vascular endothelial growth factor. Curr Cardiol Rep. 2000;2(1):24–28.
  • Xu Z, Wu L, Sun Y, et al. Tanshinone IIA pretreatment protects free flaps against hypoxic injury by upregulating stem cell-related biomarkers in epithelial skin cells. BMC Complement Altern Med. 2014;14(1):331.
  • Li Z, Zhang S, Cao L, et al. Tanshinone IIA and Astragaloside IV promote the angiogenesis of mesenchymal stem cell-derived endothelial cell-like cells via upregulation of Cx37, Cx40 and Cx43. Exp Ther Med. 2018;15(2):1847–1854.
  • Incalza MA, D’Oria R, Natalicchio A, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1–19.
  • Wang WQ, Liu L, Sun HC, et al. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization. J Hematol Oncol. 2012;5(1):69.
  • Li D, Wang J, Sun D, et al. Tanshinone IIA sulfonate protects against cigarette smoke-induced COPD and down-regulation of CFTR in mice. Sci Rep. 2018;8(1):376.
  • Li D, Sun D, Yuan L, et al. Sodium tanshinone IIA sulfonate protects against acute exacerbation of cigarette smoke-induced chronic obstructive pulmonary disease in mice. Int Immunopharmacol. 2020;81:106261.
  • Guan R, Wang J, Li Z, et al. Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1alpha signaling pathway. Front Pharmacol. 2018;9:263.
  • Chen L, Wei L, Yu Q, et al. Tanshinone IIA alleviates hypoxia/reoxygenation induced cardiomyocyte injury via lncRNA AK003290/miR-124-5p signaling. BMC molecular and cell biology. 2020;21(1):20.
  • Cui ZT, Liu JP, Wei WL. The effects of tanshinone IIA on hypoxia/reoxygenation-induced myocardial microvascular endothelial cell apoptosis in rats via the JAK2/STAT3 signaling pathway. Biomed Pharmacothe. 2016;83:1116–1126.
  • Huang YF, Liu ML, Dong MQ, et al. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro. J Ethnopharmacol. 2009;125(3):436–443.
  • Jiang Q, Lu W, Yang K, et al. Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-gamma signaling axis. Am J Physiol Cell Physiol. 2016;311(1):C136–49.
  • Xu Z, Zhang Z, Wu L, et al. Tanshinone IIA pretreatment renders free flaps against hypoxic injury through activating Wnt signaling and upregulating stem cell-related biomarkers. Int J Mol Sci. 2014;15(10):18117–18130.
  • Yadav S, Singh M, Singh SN, et al. Tanshinone IIA pretreatment promotes cell survival in human lung epithelial cells under hypoxia via AP-1-Nrf2 transcription factor. Cell Stress Chaperones. 2020;25(3):427–440.
  • Xie Z, Zhou Y, Duan X, et al. Inhibitory effect of Tanshinone IIA on inverted formin-2 protects HaCaT cells against oxidative injury via regulating mitochondrial stress. J Recept Signal Transduct Res. 2019;39(2):134–145.
  • Qi D, Wang M, Zhang D, et al. Tanshinone IIA protects lens epithelial cells from H2O2-induced injury by upregulation of lncRNA ANRIL. J Cell Physiol. 2019;234(9):15420–15428.
  • Kandilis AN, Karidis NP, Kouraklis G, et al. Proteasome inhibitors: possible novel therapeutic strategy for ischemia-reperfusion injury? Expert Opin Investig Drugs. 2014;23(1):67–80.
  • Zhang L, An GY, Zhang WG, et al. Effects of tanshinone- II A sulfonate on expression of nuclear factor-kappaB, vascular cell adhesion molecule-1 and hemorrheology during spinal cord ischemia reperfusion injury. Zhongguo Gu Shang. 2012;25(12):1016–1020.
  • Liu S, Wang K, Duan X, et al. Efficacy of danshen class injection in the treatment of acute cerebral infarction: a bayesian network meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2019;2019:5814749.
  • Ji B, Zhou F, Han L, et al. Sodium tanshinone iia sulfonate enhances effectiveness rt-PA treatment in acute ischemic stroke patients associated with ameliorating blood-brain barrier damage. Transl Stroke Res. 2017;8(4):334–340.
  • Maione F, De Feo V, Caiazzo E, et al. Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway. J Ethnopharmacol. 2014;155(2):1236–1242.
  • Fei YX, Wang SQ, Yang LJ, et al. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats. J Ethnopharmacol. 2017;207:57–66.
  • Li Y, Guo Y, Chen Y, et al. Establishment of an interleukin-1beta-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis. Mol Med Rep. 2015;12(2):1665–1676.
  • Ma S, Wang X, Wang Y, et al. Sodium tanshinone IIA sulfonate improves hemodynamic parameters, cytokine release, and multi-organ damage in endotoxemia rabbits. Med Sci Monit. 2018;24:2975–2982.
  • Zhu W, Lu Q, Chen HW, et al. Protective effect of sodium tanshinone IIA sulfonate on injury of small intestine in rats with sepsis and its mechanism. Chin J Integr Med. 2012;18(7):496–501.
  • Zhu W, Lu Q, Wan L, et al. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactive oxygen species in rats with sepsis. Chin J Integr Med. 2016;22(10):745–751.
  • Feng F, Cheng P, Xu S, et al. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-beta1/Smad signaling. Chem Biol Interact. 2020;319:109024.
  • Divya T, Velavan B, Sudhandiran G. Regulation of transforming growth factor-beta/smad-mediated epithelial-mesenchymal transition by celastrol provides protection against bleomycin-induced pulmonary fibrosis. Basic Clin Pharmacol Toxicol. 2018;123(2):122–129.
  • Chen T, Li M, Fan X, et al. Sodium tanshinone IIA sulfonate prevents angiotensin II-induced differentiation of human atrial fibroblasts into myofibroblasts. Oxid Med Cell Longev. 2018;2018:6712585.
  • Singh S, Torzewski M. Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis. Biomolecules. 2019;9(9):472. .
  • Jiang Y, Hu F, Li Q, et al. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol. 2019;77:105968.
  • Tang H, He H, Ji H, et al. Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-beta-dependent epithelial to mesenchymal transition. J Surg Res. 2015;197(1):167–175.
  • Shi MJ, Yan XL, Dong BS, et al. A network pharmacology approach to investigating the mechanism of Tanshinone IIA for the treatment of liver fibrosis. J Ethnopharmacol. 2020;253:112689.
  • Chunming J, Miao Z, Cheng S, et al. Tanshinone IIA attenuates peritoneal fibrosis through inhibition of fibrogenic growth factors expression in peritoneum in a peritoneal dialysis rat model. Ren Fail. 2011;33(3):355–362.
  • Bitker L, Burrell LM. Classic and nonclassic renin-angiotensin systems in the critically ill. Crit Care Clin. 2019;35(2):213–227.
  • Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides. 2011;32(7):1551–1565.
  • Zhang J, Cai Z, Yang M, et al. Inhibition of tanshinone IIA on renin activity protected against osteoporosis in diabetic mice. Pharm Biol. 2020;58(1):219–224.
  • Chen ZZ, Gong X. Tanshinone IIA contributes to the pathogenesis of endometriosis via renin angiotensin system by regulating the dorsal root ganglion axon sprouting. Life Sci. 2020;240:117085.
  • Yu LZ, Shi CR. Effect of tanshinone II(A) on expression of different components in renin-angiotensin system of left ventricles of hypertensive rats. Zhongguo Zhong Yao Za Zhi. 2014;39(8):1468–1472.
  • Li YS, Liang QS, Wang J. Effect of tanshinone II A on angiotensin II induced nitric oxide production and endothelial nitric oxide synthase gene expression in cultured porcine aortic endothelial cells. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;27(7):637–639.
  • Chan P, Liu JC, Lin LJ, et al. Tanshinone IIA inhibits angiotensin II-induced cell proliferation in rat cardiac fibroblasts. Am J Chin Med. 2011;39(2):381–394.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.