249
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets

ORCID Icon, , , , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1305-1315 | Received 25 Mar 2021, Accepted 20 Jul 2021, Published online: 05 Aug 2021

References

  • Liu YC, Kuo RL, Shih SRCOVID-19. The first documented coronavirus pandemic in history. Biomed J. 2020;43:328-333.
  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
  • Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:108961.
  • Since January FR. Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information. Diabetes Metab Syndr. 2020;14(4):337-339.
  • Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: an overview. J Chin Med Assoc. 2020;83(3):217–220.
  • Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-NCoV). Radiology. 2020;295(1):202–207.
  • De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534.
  • Manfredonia I, Nithin C, Ponce-Salvatierra A, et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020;48(22):12436–12452.
  • Zhang YZ, Holmes EC, Genomic A. Perspective on the Origin and Emergence of SARS-CoV-2. Cell. 2020;181(2):223–227.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
  • Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325–328.
  • Kim D, Lee JY, Yang JS, et al. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914–921.e10.
  • Lai MM, Stohlman SA. Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol. 1981;38(2):661–670.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
  • Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331(5):991–1004.
  • Siddell SG. The Coronaviridae. The Coronaviridae; Springer. 1995. p. 1–10.
  • Mengist HM. Designing of improved drugs for COVID-19 : crystal structure of SARS-CoV-2 main protease M pro. Signal Transduct Target Ther. 2020;5(1):1-2.
  • Joshi T, Joshi T, Sharma P, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. 2020. p. 4529–4536.
  • Anand K, Palm GJ, Mesters JR, et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002;21(13):3213–3224.
  • Islam R, Parves MR, Paul AS, et al. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 2020:1–12.
  • Cuesta A, Wan X, Burlingame AL, et al. Ligand conformational bias drives enantioselective modification of a surface-exposed lysine on hsp90. J Am Chem Soc. 2020;142(7):3392–3400.
  • Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science. 2020;368(6489):409–412.
  • Fast WJ Identification of possible drug treatment of coronavirus disease-19 (covid-19) through computational drug repurposing study. 2020;
  • Ben-Shabat S, Yarmolinsky L, Porat D, et al. Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354–367.
  • Abdusalam AAA, Murugaiyah V. Identification of potential inhibitors of 3CL protease of SARS-CoV-2 From ZINC database by molecular docking-based virtual screening. Front Mol Biosci. 2020;7:1–11.
  • Abo-zeid Y, Ismail NS, McLean GR, et al. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 2020;153:105465.
  • Teli DM, Shah MB, Chhabria MT. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: targets for COVID-19. Front Mol Biosci. 2021;7:1–25.
  • Keretsu S, Bhujbal SP, Cho SJ. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep. 2020;10(1):1–14.
  • Chikhale R, Sinha SK, Wanjari M, et al. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers. 2021. DOI:https://doi.org/10.1007/s11030-021-10183-w.
  • El-Demerdash A, Metwaly AM, Abd El-Aziz TM, et al. Comprehensive virtual screening of the antiviral potentialities of marine polycyclic guanidine alkaloids against SARS-CoV-2 (Covid-19). ChemRxiv. 2020.
  • Hassan A, Arafa RK. On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics. J Biomol Struct Dyn. 2021;1–14. DOI:https://doi.org/10.1080/07391102.2021.1902399
  • Runfeng L, Yunlong H, Jicheng H, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761.
  • Ebada SS, Al-Jawabri NA, Youssef FS, et al. Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure-Activity relationships, molecular modeling and impact on its folk medicinal uses. RSC Adv. 2020;10(62):38128–38141.
  • Su HX, Yao S, Zhao WF, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41(9):1167–1177.
  • Wang S, Li W, Hui H, et al. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J. 2020;39(21):1–13.
  • Komatsu TS, Okimoto N, Koyama YM, et al. Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Sci Rep. 2020;10. Article number -16986.
  • Świderek K, Moliner V. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 M pro by QM/MM computational methods. Chem Sci. 2020;11(39):10626–10630.
  • Jaffrelot Inizan T, Célerse F, Adjoua O, et al. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chem Sci. 2021;12(13):4889–4907.
  • Verma N, Henderson JA, Shen J. Proton-coupled conformational Activation of SARS coronavirus main proteases and opportunity for designing small-molecule broad-spectrum targeted covalent inhibitors. J Am Chem Soc. 2020;142(52):21883–21890.
  • Rose PW, Prlić A, Altunkaya A, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;4(45):D271-D281.
  • Kaplan WLT. Software review Swiss-PDB Viewer (Deep View). Brief Bioinform. 2001;2(2):195–197.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213.
  • Halgren TA. Performance of MMFF94*. J Comput Chem. 1996;17(5–6):490–519.
  • Allouche A. Software news and updates gabedit — a graphical user interface for computational chemistry softwares. J Comput Chem. 2012;32(1):174–182.
  • Pires DEV, Blundell TL, Ascher DB pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. 2015;
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.
  • Cheng F, Li W, Zhou Y, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099–3105.
  • Land H, Humble MSYASARA. A tool to obtain structural guidance in biocatalytic investigations. Methods Mol Biol. 2018;1685:43–67.
  • Dickson CJ, Madej BD, ÅA S, et al. Lipid14: the amber lipid force field. J Chem Theory Comput. 2014;10(2):865–879.
  • Brooks BR, Bruccoleri RE, Olafson BD, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4(2):187–217.
  • Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36(13):996–1007.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a LINEAR CONSTRAINT SOLVER for molecular simulations. J Comput Chem. 1997;18(12):1463–1472.
  • Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13(8):952–962.
  • Krieger E, Nielsen JE, Spronk CAEM, et al. Fast empirical pKa prediction by Ewald summation. J Mol Graph Model. 2006;25(4):481–486.
  • Uddin MZ, Paul A, Rakib A, et al. Chemical profiles and pharmacological properties with in silico studies on elatostema papillosum wedd. Molecules. 2021;26(4):809.
  • Munia M, Mahmud S, Mohasin M, et al. In Silico design of an epitope-based vaccine against Choline binding protein A of Streptococcus pneumoniae. Inf Med Unlocked. 2021;23:100546.
  • Chowdhury KH, Chowdhury MR, Mahmud S, et al. Drug repurposing approach against novel coronavirus disease (COVID-19) through virtual screening targeting SARS-CoV-2 main protease. Biology (Basel). 2020;10:2.
  • Pramanik SK, Mahmud S, Paul GK, et al. Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Curr Res Microb Sci. 2021;2:100013.
  • Srinivasan E, Rajasekaran R. Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val). RSC Adv. 2016;6(104):102744–102753.
  • Umamaheswari M, Aji CS, Asokkumar K, et al. In silico docking studies of aldose reductase inhibitory activity of selected flavonoids. Int J Drug Dev Res. 2012;4:328–334.
  • Ravi L, Krishnan K. A handbook on protein-ligand docking tool: autodock4. Vol. 4. 2016. p. 1–6.
  • Zhou P, Lou YX, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Mathpal S, Joshi T, Sharma P, et al. A dynamic simulation study of FDA drug from zinc database against COVID-19 main protease receptor. J Biomol Struct Dyn [Internet]. 2020;1–17. Available from http://www.ncbi.nlm.nih.gov/pubmed/32940134
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293.
  • Khan MA, Mahmud S, Alam ASMRU, et al. Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study. J Biomol Struct Dyn. 2020;1–7.
  • Mahmud S, Uddin MAR, Paul GK, et al. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief Bioinform. 2021;22(2):1402–1414.
  • Kalhor H, Sadeghi S, Abolhasani H, et al. Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches. J Biomol Struct Dyn [Internet]. 2020;1–16. Available from http://www.ncbi.nlm.nih.gov/pubmed/32969333
  • Shi J, Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J. 2006;273(5):1035–1045.
  • Khan SA, Zia K, Ashraf S, et al. Identification of chymotrypsin-like protease inhibitors of sars-cov-2 via integrated computational approach. J Biomol Struct Dyn. 2021;39(7):2607-2616.
  • Lu IL, Mahindroo N, Liang PH, et al. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J Med Chem. 2006;49(17):5154–5161.
  • Amamuddy OS, Verkhivker GM, Bishop ÖT. Impact of early pandemic stage mutations on molecular dynamics of SARS-CoV-2 M pro. J Chem Inf Model. 2020;60(10):5080–5102.
  • Mishra CB, Pandey P, Sharma RD, et al. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Brief Bioinform. 2021;22(2):1346–1360.
  • Saraswat J, Singh P, Patel R. A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: ionic liquid vs herbal and natural compounds. J Mol Liq. 2021;326:115298.
  • Han Y, Wang Z, Ren J, et al. Potential inhibitors for the novel coronavirus (SARS-CoV-2). Brief Bioinform. 2021;22(2):1225–1231.
  • Zhang MQ, Wilkinson B. Drug discovery beyond the “rule-of-five.” Curr Opin Biotechnol. 2007;18(6):478–488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.