486
Views
4
CrossRef citations to date
0
Altmetric
Review

Individualized precision dosing approaches to optimize antimicrobial therapy in pediatric populations

, , , , & ORCID Icon
Pages 1383-1399 | Received 10 May 2021, Accepted 26 Jul 2021, Published online: 06 Aug 2021

References

  • Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–211.
  • Sharrow D, Hug L, Liu Y, et al. Levels and trends in child mortality report 2020. United Nations Inter-agency Group for Child Mortality Estimation, Unicef. 2020.
  • Schlapbach LJ, Straney L, Alexander J, et al. Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002–13: a multicentre retrospective cohort study. Lancet Infect Dis. 2015;15(1):46–54.
  • Moynihan KM, Alexander PMA, Schlapbach LJ, et al. Epidemiology of childhood death in Australian and New Zealand intensive care units. Intensive Care Med. 2019;45(9):1262–1271. Epub 2019/ 07/05. PubMed PMID: 31270578.
  • Weiss SL, Peters MJ, Alhazzani W, et al. Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl1):1–9. Epub 2020/ 02/08. PubMed PMID: 32030528.
  • Schlapbach LJ, Thompson K, Finfer SR. The WHO resolution on sepsis: what action is needed in Australia? Med J Aust. 2019;211(9):395–7.e1.
  • Done AK, Cohen SN, Strebel L. Pediatric clinical pharmacology and the “therapeutic orphan” Annu Rev Pharmacol Toxicol. 1977;17(1):561–573.
  • Thakkar N, Salerno S, Hornik CP, et al. Clinical pharmacology studies in critically Ill children. Pharm Res. 2017;34(1):7–24. Epub 2016/ 09/03. PubMed PMID: 27585904; PubMed Central PMCID: PMCPMC5177463.
  • Testing SR. Medications in Children. N Engl J Med. 2002;347(18):1462–1470.
  • Spong CY, Bianchi DW. Improving public health requires inclusion of underrepresented populations in research. JAMA. 2018;319(4):337–338.
  • Landwehr C, Richardson J, Bint L, et al. Cross-sectional survey of off-label and unlicensed prescribing for inpatients at a paediatric teaching hospital in Western Australia. PLoS One. 2019;14(1):e0210237.
  • Hoon D, Taylor MT, Kapadia P, et al. Trends in off-label drug use in ambulatory settings: 2006–2015. Pediatrics. 2019;144(4):e20190896.
  • Czaja AS, Reiter PD, Schultz ML, et al. Patterns of off-label prescribing in the pediatric intensive care unit and prioritizing future research. J Pediatr Pharmacol Ther. 2015;20(3):186–196.
  • HTMdL C, Costa TX, Martins RR, et al. Use of off-label and unlicensed medicines in neonatal intensive care. PLoS One. 2018;13(9):e0204427–e.
  • Maxfield K, Zineh I. precision dosing: a clinical and public health imperative. JAMA. 2021;2. DOI:https://doi.org/10.1001/jama.2021.1004.
  • Fan J, De Lannoy IAM. Pharmacokinetics. Biochem Pharmacol. 2014;87(1):93–120.
  • Neal-Kluever A, Fisher J, Grylack L, et al. Physiology of the neonatal gastrointestinal system relevant to the disposition of orally administered medications. Drug Metab Dispos. 2019;47(3):296–313. Epub 2018/ 12/21. PubMed PMID: 30567878.
  • Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657–668.
  • Lange D, Pavao JH, Wu J, et al. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol. 1997;37(6):535–540. Epub 1997/ 06/01. PubMed PMID: 9208361.
  • Mayer A-PT, Durward A, Turner C, et al. Amylin is associated with delayed gastric emptying in critically ill children. Intensive Care Med. 2002;28(3):336–340.
  • Bonner JJ, Vajjah P, Abduljalil K, et al. Does age affect gastric emptying time? A model-based meta-analysis of data from premature neonates through to adults. Biopharm Drug Dispos. 2015;36(4):245–257.
  • De Belle RC, Vaupshas V, Vitullo BB, et al. Intestinal absorption of bile salts: immature development in the neonate. J Pediatr. 1979;94(3):472–476.
  • Shankaran S, Kauffman RE. Use of chloramphenicol palmitate in neonates. J Pediatr. 1984;105(1):113–116.
  • Heimann G. Enteral absorption and bioavailability in children in relation to age. Eur J Clin Pharmacol. 1980;18(1):43–50.
  • Di Lorenzo C, Flores AF, Hyman PE. Age-related changes in colon motility. J Pediatr. 1995;127(4):593–596.
  • Stratchunsky LS, Nazarov AD, Firsov AA, et al. Age dependence of erythromycin rectal bioavailability in children. Eur J Drug Metab Pharmacokinet.1991;Spec No 3:321-3. PMID: 1820902.
  • Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology — drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–1167.
  • Chiou YB, Stratum Corneum B-PU. Maturation: a review of neonatal skin function. Skin Pharmacol Physiol. 2004;17(2):57–66.
  • Pyati SP, Ramamurthy RS, Krauss MT, et al. Absorption of iodine in the neonate following topical use of povidone iodine. J Pediatr. 1977;91(5):825–828.
  • Kearns GL, Abdel-Rahman SM, Blumer JL, et al. Single dose pharmacokinetics of linezolid in infants and children. Pediatr Infect Dis J. 2000;19(12):1178–1184.
  • Kearns GL, Jungbluth GL, Abdel‐Rahman SM, et al. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther. 2003;74(5):413–422.
  • Parving HH, Klebe JG, Ingomar CJ. Simultaneous determination of plasma volume and transcapillary escape rate with 131 I-labelled albumin and T-1824 in the newborn. Acta Paediatr. 1973;62(3):248–252.
  • Ehrnebo M, Agurell S, Jalling B, et al. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–193.
  • Decroix MO, Zini R, Chaumeil JC, et al. Cefazolin serum protein binding and its inhibition by bilirubin, fatty acids and other drugs. Biochem Pharmacol. 1988;37(14):2807–2814. Epub 1988/ 07/15. PubMed PMID: 3395358.
  • Smits A, Kulo A, Verbesselt R, et al. Cefazolin plasma protein binding and its covariates in neonates. Eur J Clin Microbiol Infect Dis. 2012;31(12):3359–3365. Epub 2012/ 07/27. PubMed PMID: 22833246.
  • Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to Alpha-1-acid glycoprotein. Pharm Res. 2019;36(2):1–19.
  • Israili ZH, Dayton PG. Human Alpha-1-Glycoprotein and its interactions with drugs. Drug Metab Rev. 2001;33(2):161–235.
  • Gonzalez D, Delmore P, Bloom BT, et al. Clindamycin pharmacokinetics and safety in preterm and term infants. Antimicrob Agents Chemother. 2016;60(5):2888–2894. PubMed PMID: 26926644.
  • Al-Omari A, Murry DJ. Pharmacogenetics of the cytochrome P450 enzyme system: review of current knowledge and clinical significance. J Pharm Pract. 2007;20(3):206–218.
  • Benedetti MS, Whomsley R, Canning M. Drug metabolism in the paediatric population and in the elderly. Drug Discov Today. 2007;12(15):599–610.
  • Ginsberg G, Hattis D, Sonawane B, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci. 2002;66(2):185–200.
  • Brammer KW, Coates PE. Pharmacokinetics of fluconazole in pediatric patients. Eur J Clin Microbiol Infect Dis. 1994;13(4):325–329. Epub 1994/ 04/01. PubMed PMID: 8070441.
  • Blanco J, Harrison P, Evans W, et al. Human Cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000;28(4):379–382.
  • Weiss CF, Glazko AJ, Weston JK. Chloramphenicol in the newborn infant. A physiologic explanation of its toxicity when given in excessive doses. N Engl J Med. 1960;262(16):787–794. Epub 1960/ 04/21. PubMed PMID: 13843700.
  • Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.
  • West JR, Smith HW, Chasis H. Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy. J Pediatr. 1948;32(1):10–18. Epub 1948/ 01/01. PubMed PMID: 18920567.
  • Jian Hua M, Yong Kun H, Shi Jie C, et al. Urinary microalbumin and retinol-binding protein assay for verifying children’s nephron development and maturation. Clin Chim Acta. 1997;264(1):127–132.
  • Sato Y. Pharmacokinetics of antibiotics in neonates. Acta Paediatr Jpn. 1997;39(1):124–131. Epub 1997/ 02/01. PubMed PMID: 9124044
  • Shi ZR, Chen XK, Tian LY, et al. Population pharmacokinetics and dosing optimization of ceftazidime in infants. Antimicrob Agents Chemother. 2018;62(4). Epub 2018/ 01/31. PubMed PMID: 29378703; PubMed Central PMCID: PMCPMC5913974. doi: https://doi.org/10.1128/aac.02486-17.
  • Bijleveld YA, van den Heuvel ME, Hodiamont CJ, et al. Population pharmacokinetics and dosing considerations for gentamicin in newborns with suspected or proven sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother. 2017;61(1):e01304–16.
  • van den Anker J, Pokorna N, Kinzig-Schippers M, et al. Meropenem Pharmacokinetics in the Newborn. Antimicrob Agents Chemother. 2009;53(9):3871–3879.
  • De Cock P, van Dijkman SC, de Jaeger A, et al. Dose optimization of piperacillin/tazobactam in critically ill children. J Antimicrob Chemother. 2017;72(7):2002–2011. Epub 2017/ 04/08. PubMed PMID: 28387840.
  • Marqués‐Miñana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol. 2010;70(5):713–720.
  • Chien S, Wells TG, Blumer JL, et al. Levofloxacin Pharmacokinetics in Children. J Clin Pharmacol. 2005;45(2):153–160.
  • Jacobs RF, Kearns GL, Brown AL, et al. Renal clearance of imipenem in children. Eur J Clin Microbiol. 1984;3(5):471–474.
  • Peltola H, Väärälä M, Renkonen O, et al. Pharmacokinetics of single-dose oral ciprofloxacin in infants and small children. Antimicrob Agents Chemother. 1992;36(5):1086–1090.
  • Siber GR, Echeverria P, Smith AL, et al. Pharmacokinetics of gentamicin in children and adults. J Infect Dis. 1975;132(6):637–651. Epub 1975/ 12/01. PubMed PMID: 1202109.
  • Medellín-Garibay SE, Rueda-Naharro A, Peña-Cabia S, et al. Population pharmacokinetics of gentamicin and dosing optimization for infants. Antimicrob Agents Chemother. 2015;59(1):482–489.
  • Colin PJ, Allegaert K, Thomson AH, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58(6):767–780.
  • Cojutti P, Maximova N, Crichiutti G, et al. Pharmacokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation. J Antimicrob Chemother. 2015;70(1):198–206. Epub 2014/ 09/04. PubMed PMID: 25182066.
  • Li SC, Ye Q, Xu H, et al. Population pharmacokinetics and dosing optimization of linezolid in pediatric patients. Antimicrob Agents Chemother. 2019;63(4). DOI:https://doi.org/10.1128/AAC.02387-18
  • Momper JD, Yang J, Gockenbach M, et al. Dynamics of organic anion transporter-mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol. 2019;14(4):540–548.
  • Bueters R, Bael A, Gasthuys E, et al. Ontogeny and cross-species comparison of pathways involved in drug absorption, distribution, metabolism, and excretion in neonates (review): kidney. Drug Metab Dispos. 2020;48(5):353–367.
  • Blackmon LR, Batton DG, Bell EF, et al. Age terminology during the perinatal period. AAP Policy. 2004;114(5):1362–1364.
  • Tremoulet A, Le J, Poindexter B, et al. Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob Agents Chemother. 2014;58(6):3013–3020.
  • Wilbaux M, Fuchs A, Samardzic J, et al. Pharmacometric approaches to personalize use of primarily renally eliminated antibiotics in preterm and term neonates. J Clin Pharmacol. 2016;56(8):909–935. Epub 2016/ 01/15. PubMed PMID: 26766774.
  • Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.
  • Eppensteiner J, Kwun J, Scheuermann U, et al. Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight. 2019;4(16):16.
  • Schuetz P, Jones AE, Aird WC, et al. Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock. 2011;36(2):104–108. Epub 2011/ 04/28. PubMed PMID: 21522043; PubMed Central PMCID: PMCPMC3139767.
  • Sridharan K, Al Daylami A. Clinical audit of gentamicin use by Bayesian pharmacokinetic approach in critically ill children. J Infect Chemother. 2020;26(6):540–548.
  • Durward A, Mayer A, Skellett S, et al. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88(5):419–422. Epub 2003/ 04/30. PubMed PMID: 12716714; PubMed Central PMCID: PMCPMC1719575.
  • Tillement JP, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clin Pharmacokinet. 1978;3(2):144–154. Epub 1978/ 03/01. PubMed PMID: 25156.
  • Smits A, Pauwels S, Oyaert M, et al. Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis. 2018;37(8):1503–1510.
  • Pullen J, Stolk LM, Degraeuwe PL, et al. Protein binding of flucloxacillin in neonates. Ther Drug Monit. 2007;29(3):279–283. Epub 2007/ 05/29. PubMed PMID: 17529883.
  • McNamara PJ, Trueb V, Stoeckel K. Ceftriaxone binding to human serum albumin. Indirect displacement by probenecid and diazepam. Biochem Pharmacol. 1990;40(6):1247–1253. Epub 1990/ 09/15. PubMed PMID: 2403378.
  • Basu RK, Kaddourah A, Goldstein SL. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health. 2018;2(2):112–120. Epub 2018/ 07/24. PubMed PMID: 30035208; PubMed Central PMCID: PMCPMC6053052.
  • Mogahed EA, Ghita H, El-Raziky MS, et al. Secondary hepatic dysfunction in pediatric intensive care unit: risk factors and outcome. Dig Liver Dis. 2020;52(8):889–894.
  • Cooper AC, Commers AR, Finkelstein M, et al. Otoacoustic emission screen results in critically ill neonates who received gentamicin in the first week of life. Pharmacotherapy. 2011;31(7):649–657.
  • Bonazza S, Bresee LC, Kraft T, et al. Frequency of and risk factors for acute kidney injury associated with vancomycin use in the pediatric intensive care unit. J Pediatr Pharmacol Ther. 2016;21(6):486–493.
  • Joyce EL, Kane-Gill SL, Priyanka P, et al. Piperacillin/tazobactam and antibiotic-associated acute kidney injury in critically ill children. J Am Soc Nephrol. 2019;30(11):2243–2251.
  • Fiorito TM, Luther MK, Dennehy PH, et al. Nephrotoxicity with vancomycin in the pediatric population: a systematic review and meta-analysis. Pediatr Infect Dis J. 2018;37(7):654–661.
  • Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, et al. Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet. 2018;57(9):1107–1121.
  • Dhont E, Van Der Heggen T, De Jaeger A, et al. Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients? Pediatr Nephrol. 2018;35(1):25–39.
  • Lee B, Kim J, Park JD, et al. Predicting augmented renal clearance using estimated glomerular filtration rate in critically-ill children. Clin Nephrol. 2017;88(9):148–155. Epub 2017/ 07/13. PubMed PMID: 28699888.
  • Hirai K, Ihara S, Kinae A, et al. Augmented renal clearance in pediatric patients with febrile neutropenia associated with vancomycin clearance. Ther Drug Monit. 2016;38(3):393–397. Epub 2016/ 05/14. PubMed PMID: 27172381.
  • Avedissian SN, Bradley E, Zhang D, et al. Augmented renal clearance using population-based pharmacokinetic modeling in critically ill pediatric patients. Pediatr Crit Care Med. 2017;18(9):e388–e94.
  • De Cock PAJG, Standing JF, Barker CIS, et al. Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother. 2015;59(11):7027–7035.
  • Béranger A, Oualha M, Urien S, et al. Population pharmacokinetic model to optimize cefotaxime dosing regimen in critically Ill children. Clin Pharmacokinet. 2018;57(7):867–875. Epub 2017/ 10/06. PubMed PMID: 28980166.
  • Van Der Heggen T, Dhont E, Peperstraete H, et al. Augmented renal clearance: a common condition in critically ill children. Pediatr Nephrol. 2019;34(6):1099–1106.
  • Avedissian SN, Skochko SM, Le J, et al. Use of . The journal of pediatric pharmacology and therapeutics. 2020;25(5):413–422.
  • Avedissian SN, Rhodes NJ, Kim Y, et al. Augmented renal clearance of aminoglycosides using population-based pharmacokinetic modelling with Bayesian estimation in the paediatric ICU. J Antimicrob Chemother. 2020;75(1):162–169.
  • Lv CL, Lu JJ, Chen M, et al. Vancomycin population pharmacokinetics and dosing recommendations in haematologic malignancy with augmented renal clearance children. J Clin Pharm Ther. 2020;45(6):1278–1287.
  • Sutiman N, Koh JC, Watt K, et al. Pharmacokinetics alterations in critically Ill pediatric patients on extracorporeal membrane oxygenation: a systematic review. Front Pediatr. 2020;8:260.
  • Mulugeta Y, Barrett JS, Nelson R, et al. Exposure matching for extrapolation of efficacy in pediatric drug development. J Clin Pharmacol. 2016;56(11):1326–1334.
  • Anderson BJ, Holford NHG. Understanding dosing: children are small adults, neonates are immature children. PubMed PMID: 1424324401; 23832061 Arch Dis Child. 2013;989:737–744.
  • Calvier EAM, Krekels E, PAJ V, et al. Allometric scaling of clearance in paediatric patients: when does the magic of 0.75 fade? Clin Pharmacokinet. 2017;56(3):273–285.
  • Mahmood I, Staschen C-M, Goteti K. Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J. 2014;16(6):1334–1343.
  • Edginton AN, Schmitt W, Voith B, et al. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704. Epub 2006/ 06/29. PubMed PMID: 16802850.
  • Sager JE, Yu J, Ragueneau-Majlessi I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–1837.
  • Mahmood I, Tegenge MA. A comparative study between allometric scaling and physiologically based pharmacokinetic modeling for the prediction of drug clearance from neonates to adolescents. J Clin Pharmacol. 2019;59(2):189–197.
  • Conchie JM, Munroe JD, Anderson DO. The incidence of staining of permanent teeth by the tetracyclines. Can Med Assoc J. 1970;103(4):351–356.
  • KK P, FI R, BJ S. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother. 1995;39(9):1988–1992.
  • Saunders NR, Habgood MD, Dziegielewska KM. Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol. 1999;26(2):85–91.
  • Ellis JM, Kuti JL, Nicolau DP. Pharmacodynamic Evaluation of meropenem and cefotaxime for pediatric meningitis: a report from the OPTAMA program. Paediatr Drugs. 2006;8(2):131–138.
  • Tam VH, Louie A, Deziel MR, et al. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51(2):744–747. Epub 2006/ 11/23. PubMed PMID: 17116679; PubMed Central PMCID: PMCPMC1797751.
  • Firsov AA, Vostrov SN, Lubenko IY, et al. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(5):1604.
  • Sumi CD, Heffernan AJ, Lipman J, et al. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet. 2019;58(11):1407–1443.
  • Weiner-Lastinger LM, Abner S, Benin AL, Weiner-Lastinger LM, Abner S, Benin AL, et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: summary of data reported to the national healthcare safety network, 2015–2017. Infect Control Hosp Epidemiol. 2019;41(1):19–30. .
  • Weiner-Lastinger LM, Abner S, Edwards JR, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the national healthcare safety network, 2015–2017. Infect Control Hosp Epidemiol. 2019;41(1):1–18.
  • Rhomberg PR, Fritsche TR, Sader HS, et al. Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward Gram-negative isolates from the meropenem yearly susceptibility test information collection program (USA). Diagn Microbiol Infect Dis. 2006;56(1):57–62.
  • Zingg W, Hopkins S, Gayet-Ageron A, et al. Health-care-associated infections in neonates, children, and adolescents: an analysis of paediatric data from the European centre for disease prevention and control point-prevalence survey. Lancet Infect Dis. 2017;17(4):381–389. Epub 2017/ 01/17. PubMed PMID: 28089444.
  • Lake JG, Weiner LM, Milstone AM, et al. Pathogen distribution and antimicrobial resistance among pediatric healthcare-associated infections reported to the national healthcare safety network, 2011-2014. Infect Control Hosp Epidemiol. 2018;39(1):1–11. Epub 2017/ 12/19. PubMed PMID: 29249216; PubMed Central PMCID: PMCPMC6643994.
  • Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821). DOI:https://doi.org/10.1098/rspb.2014.3085
  • Bickes MS, Pirr S, Heinemann AS, et al. Constitutive TNF-α signaling in neonates is essential for the development of tissue-resident leukocyte profiles at barrier sites. FASEB J. 2019;33(10):10633–10647. Epub 2019/ 07/03. PubMed PMID: 31262195.
  • Raymond SL, López MC, Baker HV, et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS One. 2017;12(9):e0184159. Epub 2017/ 09/09. PubMed PMID: 28886074; PubMed Central PMCID: PMCPMC5590890 Inflammatix, Inc, which intends to market a transcriptomic diagnostic test for sepsis (sepsis meta score, SMS; Sci Transl Med. 2015; 7(287):287ra271.).No funding was provided by Inflammatix for this project and the manuscript does not discuss, test, or endorse the SMS. This does not alter our adherence to PLOS ONE policies on sharing data and materials. The other authors declare no conflicting or competing interests.
  • Craig WA. Pharmacokinetic/Pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10.
  • Mouton JW, Muller AE, Canton R, et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–568.
  • Abdul-Aziz MH, Alffenaar J-WC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127–1153. .
  • Jorgensen SCJ, Spellberg B, Shorr AF, et al. Should therapeutic drug monitoring based on the vancomycin area under the concentration-time curve be standard for serious methicillin-resistant staphylococcus aureus infections?-no. Clin Infect Dis. 2021 Mar;19. DOI:https://doi.org/10.1093/cid/ciaa1743
  • Blaser J, Stone BB, Groner MC, et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987;31(7):1054–1060.
  • Llanos-Paez CC, Hennig S, Staatz CE. Population pharmacokinetic modelling, Monte Carlo simulation and semi-mechanistic pharmacodynamic modelling as tools to personalize gentamicin therapy. J Antimicrob Chemother. 2017;72(3):639–667.
  • Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17(3):479–501. Epub 2004/ 01/09. PubMed PMID: 14711073.
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Clin Infect Dis. 2020;71(6):1361–1364.
  • Tkachuk S, Collins K, Ensom MHH. The relationship between vancomycin trough concentrations and AUC/MIC ratios in pediatric patients: a qualitative systematic review. Paediatr Drugs. 2018;20(2):153–164. Epub 2018/ 01/19. PubMed PMID: 29344778.
  • Hassan HE, Ivaturi V, Gobburu J, et al. Dosage regimens for meropenem in children with pseudomonas infections do not meet serum concentration targets. Clin Transl Sci. 2020;13(2):301–308.
  • Rapp M, Urien S, Foissac F, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76(1):61–71.
  • Salvador E, Oualha M, Bille E, et al. Population pharmacokinetics of cefazolin in critically ill children infected with methicillin-sensitive Staphylococcus aureus. Clin Microbiol Infect. 2021;27(3):413–419. Epub 2020/ 05/04. PubMed PMID: 32360445.
  • Béranger A, Benaboud S, Urien S, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance. Clin Pharmacokinet. 2019;58(2):223–233.
  • Leroux S, Zhao W, Bétrémieux P, et al. Therapeutic guidelines for prescribing antibiotics in neonates should be evidence-based: a French national survey. Arch Dis Child. 2015;100(4):394–398.
  • Metsvaht T, Nellis G, Varendi H, et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: implications for research and dissemination. BMC Pediatr. 2015;15(1):41.
  • Kadambari S, Heath PT, Sharland M, et al. Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units. J Antimicrob Chemother. 2011;66(11):2647–2650.
  • Tod MM, Padoin C, Petitjean O. Individualising aminoglycoside dosage regimens after therapeutic drug monitoring: simple or complex pharmacokinetic methods? Clin Pharmacokinet. 2001;40(11):803–814.
  • Paterson DL, Robson JMB, Wagener MM, et al. Monitoring of serum aminoglycoside levels with once-daily dosing. Pathology. 1998;30(3):289–294.
  • Crumby T, Rinehart E, Carby MC, et al. Pharmacokinetic comparison of nomogram-based and individualized vancomycin regimens in neonates. Am J Health Syst Pharm. 2009;66(2):149–153.
  • Lee P, Frye J, Chen X, et al. Creation and validation of a pediatric vancomycin nomogram for a goal trough of 10–15 mg/L at a quaternary care children’s hospital. Open Forum Infect Dis. 2017;4(suppl_1):S300–S.
  • Tomlinson RJ, Ronghe M, Goodbourne C, et al. Once daily ceftriaxone and gentamicin for the treatment of febrile neutropenia. Arch Dis Child. 1999;80(2):125–131.
  • Best EJ, Gazarian M, Cohn R, et al. Once-daily gentamicin in infants and children: a prospective cohort study evaluating safety and the role of therapeutic drug monitoring in minimizing toxicity. Pediatr Infect Dis J. 2011;30(10):827–832.
  • Saddi V, Preddy J, Dalton S, et al. Variation in Gentamicin Dosing and Monitoring in Pediatric Units across New South Wales. Pediatr Qual Saf. 2017;2(2):e015. Epub 2017/ 02/17. PubMed PMID: 30229154; PubMed Central PMCID: PMCPMC6132910.
  • Hennig S, Holthouse F, Staatz CE. Comparing dosage adjustment methods for once-daily tobramycin in paediatric and adolescent patients with cystic fibrosis. Clin Pharmacokinet. 2015;54(4):409–421.
  • Massie J, Cranswick N. Pharmacokinetic profile of once daily intravenous tobramycin in children with cystic fibrosis. J Paediatr Child Health. 2006;42(10):601–605.
  • Sawchuk RJ, Zaske DE. Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J Pharmacokinet Biopharm. 1976;4(2):183–195. Epub 1976/ 04/01. PubMed PMID: 950590.
  • Pai MP, Neely M, Rodvold KA, et al. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev. 2014;77:50–57.
  • Alsultan A, Abouelkheir M, Elsharawy Y, et al. Optimizing gentamicin dosing in pediatrics using monte carlo simulations. Pediatr Infect Dis J. 2019;38(4):390.
  • Germovsek E, Kent A, Metsvaht T, et al. Development and evaluation of a gentamicin pharmacokinetic model that facilitates opportunistic gentamicin therapeutic drug monitoring in neonates and infants. Antimicrob Agents Chemother. 2016;60(8):4869–4877.
  • Avent ML, Rogers BA. Optimising antimicrobial therapy through the use of Bayesian dosing programs. Int J Clin Pharm. 2019;41(5):1121–1130.
  • Turnidge J ALADDIN [Internet]: Australian society for antimicrobials; 2010 [cited 2021 Jan 28]. Available from: https://www.asainc.net.au/aladdin.
  • AUC Calculation tool for tobramycin and gentamicin [internet]: children’s health Queensland hospital and health service; 2021 [cited 2021 Jan 28]. Available from: https://www.childrens.health.qld.gov.au/chq/health-professionals/antimicrobial-stewardship/therapeutic-drug-monitoring/. Subscription required to view.
  • Heil EL, Claeys KC, Mynatt RP, et al. Making the change to area under the curve–based vancomycin dosing. Am J Health Syst Pharm. 2018;75(24):1986–1995.
  • van der Zanden TM, De Wildt SN, Liem Y, et al. Developing a paediatric drug formulary for the Netherlands. Arch Dis Child. 2017;102(4):357–361. Epub 2016/ 11/02. PubMed PMID: 27799154.
  • Janssen EJ, Välitalo PA, Allegaert K, et al. Towards rational dosing algorithms for vancomycin in neonates and infants based on population pharmacokinetic modeling. Antimicrob Agents Chemother. 2016;60(2):1013–1021. Epub 2015/ 12/09. PubMed PMID: 26643337; PubMed Central PMCID: PMCPMC4750654.
  • Leroux S, Jacqz-Aigrain E, Biran V, et al. Clinical utility and safety of a model-based patient-tailored dose of vancomycin in neonates. Antimicrob Agents Chemother. 2016;60(4):2039–2042. Epub 2016/ 01/21. PubMed PMID: 26787690; PubMed Central PMCID: PMCPMC4808207.
  • Al-Metwali B, Mulla H. Personalised dosing of medicines for children. J Pharm Pharmacol. 2017;69(5):514–524. Epub 2017/ 03/08. PubMed PMID: 28266713.
  • Bui S, Facchin A, Ha P, et al. Population pharmacokinetics of ceftazidime in critically ill children: impact of cystic fibrosis. J Antimicrob Chemother. 2020;75(8):2232–2239.
  • Hahn A, Frenck RW, Zou Y, et al. Validation of a pediatric population pharmacokinetic model for vancomycin. Ther Drug Monit. 2015;37(3):413–416.
  • Berthaud R, Benaboud S, Hirt D, et al. Early bayesian dose adjustment of vancomycin continuous infusion in children in a randomized controlled trial. Antimicrob Agents Chemother. 2019;63(12):12.
  • Frymoyer A, Stockmann C, Hersh AL, et al. Individualized empiric vancomycin dosing in neonates using a model-based approach. J Pediatric Infect Dis Soc. 2019;8(2):97–104.
  • Neely MN, Kato L, Youn G, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):2.
  • Le J, Ngu B, Bradley JS, et al. Vancomycin monitoring in children using bayesian estimation. Ther Drug Monit. 2014;36(4):510–518. Epub 2014/ 01/24. PubMed PMID: 24452067; PubMed Central PMCID: PMCPMC4101060.
  • Broeker A, Nardecchia M, Klinker KP, et al. Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting. Clin Microbiol Infect. 2019;25(10):1286.e1-.e7. Epub 2019/ 03/16. PubMed PMID: 30872102.
  • Gottesman O, Johansson F, Komorowski M, et al. Guidelines for reinforcement learning in healthcare. Nat Med. 2019;25(1):16–18.
  • Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet. 2020;395(10236):1579–1586.
  • Lonsdale H, Jalali A, Ahumada L, et al. Machine learning and artificial intelligence in pediatric research: current state, future prospects, and examples in perioperative and critical care. J Pediatr. 2020;221:S3–S10.
  • InsightRX: insightRX and Children’s Hospital Los Angeles (CHLA) to Partner on Precision Dosing [Internet]; 2019 [cited 2021 Feb 06]. Available from: https://www.prnewswire.com/news-releases/insightrx-and-childrens-hospital-los-angeles-chla-to-partner-on-precision-dosing-300810186.html
  • Kantasiripitak W, Van Daele R, Gijsen M, et al. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11. DOI:https://doi.org/10.3389/fphar.2020.00620.
  • Fuchs A, Csajka C, Thoma Y, et al. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.
  • Burgard M, Burgard M, Sandaradura I, et al. Evaluation of tobramycin exposure predictions in three bayesian forecasting programmes compared with current clinical practice in children and adults with cystic fibrosis. Clin Pharmacokinet. 2018;57(8):1017–1027.
  • LAPKB Los Angeles: Laboratory of Applied Pharmacokinetics and Bioinformatics (LAPKB). Optimizing drug therapy for populations and individuals [Internet]; 2021 [cited 2021 Feb 27]. Available from: http://www.lapk.org/bestdose.php
  • DoseMeRx: in: dosemerx platform; drug packages; infectious diseases [internet]; 2021 [cited 2021 Feb 27]. Available from: https://doseme-rx.com/our-platform
  • DosOpt: Dosing Optimizer. In: dosOpt platform; doseopt basic-core non-validated vancomycin platform [Internet]; [cited 2021 Feb 27]. Available from: https://dosopt.com/en/dosopt-platform/
  • ID-ODS: Optimum Dosing Strategies. In: ID-ODS; Pediatrics {Internet]; 2021 [cited 2021 Feb 27]. Available from: https://www.optimum-dosing-strategies.org/id-ods/pediatric/
  • Mediware. MwPharm drug list In: hospital; Products: mwPharm++; Documentation; MwPharm drug database [Internet]; [cited 2021 Feb 27]. Available from: https://mediware.cz/en/mwpharm-plus-plus-documentation
  • NextDose: in: medicines; medicines overview [Internet]; [cited 2021 Feb 27]. Available from: http://holford.fmhs.auckland.ac.nz/nextdose/medicines/
  • PrecisePK: in: user Manual - Pharmacokinetic software precise PK; download [Internet]; [cited 2021 Feb 27]. Available from: https://manualzilla.com/doc/5923818/user-manual---pharmacokinetic-software-precise-pk
  • TDMx: in: tDMx; Launch TDMX; Launch Pad; Special Populations [Internet]; [cited 2021 Feb 27]. Available from: http://www.tdmx.eu/Launch-TDMx/
  • Dubovitskaya A, Buclin T, Schumacher M, et al., editors. Proceedings of the 8th ACM International Conference on bioinformatics, computational biology and health informatics. International Conference on Bioinformatics and Computational Biology; 2017; Boston, MA, USA: ACM. p 223–232.
  • Germovsek E, Germovsek E, Barker CIS, et al. Pharmacokinetic–Pharmacodynamic modeling in pediatric drug development, and the importance of standardized scaling of clearance. Clin Pharmacokinet. 2019;58(1):39–52.
  • Lonsdale DO, Kipper K, Baker EH, et al. beta-Lactam antimicrobial pharmacokinetics and target attainment in critically ill patients aged 1 day to 90 years: the ABDose study. J Antimicrob Chemother. 2020;75(12):3625–3634.
  • Hartman SJF, Orriëns LB, Zwaag SM, et al. External validation of model-based dosing guidelines for vancomycin, gentamicin, and tobramycin in critically ill neonates and children: a pragmatic two-center study. Paediatr Drugs. 2020;22(4):433–444.
  • InsightRX: in: drug modules; infectious disease [Internet]; 2021 [cited 2021 Feb 27]. Available from: https://www.insight-rx.com/product/drug-modules
  • Roberts JA, Joynt G, Lee A, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARRT Study. Clin Infect Dis. 2020 Mar. https://doi.org/10.1093/cid/ciaa224.
  • Wong G, Taccone F, Villois P, et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J Antimicrob Chemother. 2020;75(2):429–433.
  • Knoderer CA, Karmire LC, Andricopulos KL, et al. Extended infusion of piperacillin/tazobactam in children. J Pediatr Pharmacol Ther. 2017;22(3):212–217.
  • Shabaan AE, Nour I, Elsayed Eldegla H, et al. Conventional versus prolonged infusion of meropenem in neonates with gram-negative late-onset sepsis: a randomized controlled trial. Pediatr Infect Dis J. 2017;36(4):358–363.
  • Cies JJ, Moore WS, Enache A, et al. β-lactam Therapeutic Drug Management in the PICU. Crit Care Med. 2018;46(2):272–279.
  • Roberts JA. Beta-Lactam therapeutic drug monitoring in the critically ill children: big solution for infections in small people? Crit Care Med. 2018;46(2):335–337.
  • Gwee A, Cranswick N, McMullan B, et al. Continuous versus intermittent vancomycin infusions in infants: a randomized controlled trial. Pediatrics. 2019;143(2):e20182179.
  • McNeil JC, Kaplan SL, Vallejo JG. The influence of the route of antibiotic administration, methicillin susceptibility, vancomycin duration and serum trough concentration on outcomes of pediatric staphylococcus aureus bacteremic osteoarticular infection. Pediatr Infect Dis J. 2017;36(6):572–577.
  • Frymoyer A, Schwenk HT, Zorn Y, et al. Model-Informed precision dosing of vancomycin in hospitalized children: implementation and adoption at an academic children’s hospital. Front Pharmacol. 2020;11:551.
  • Vinks AA, Peck RW, Neely M, et al. Development and implementation of electronic health record-integrated model-informed clinical decision support tools for the precision dosing of drugs. Clin Pharmacol Ther. 2020;107(1):129–135. Epub 2019/ 10/18. PubMed PMID: 31621071.
  • Roggeveen LF, Guo T, Essen RH, et al. Right dose, right now: development of autokinetics for real time model informed precision antibiotic dosing decision support at the bedside of critically ill patients. Front Pharmacol. 2020;11:16.
  • Fuchs A, Guidi M, Giannoni E, et al. Population pharmacokinetic study of gentamicin in a large cohort of premature and term neonates: population pharmacokinetics of gentamicin in newborns. Br J Clin Pharmacol. 2014;78(5):1090–1101.
  • Darwich AS, Ogungbenro K, Vinks AA, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.