702
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical pharmacology of SGLT-2 inhibitors in heart failure

, , &
Pages 149-160 | Received 12 Oct 2022, Accepted 24 Jan 2023, Published online: 02 Feb 2023

References

  • Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na(+)? Int J Mol Sci. 2021 Jul 26;22(15):7976.
  • McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 Sep 21;42(36):3599–3726.
  • Joshi SS, Singh T, Newby DE, et al. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021 Feb 26;107(13):1032–1038.
  • Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: a State-of-the-Art Review. JACC Basic Transl Sci. 2020 Jun;5(6):632–644.
  • Lahoz R, Fagan A, McSharry M, et al. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020 Aug;7(4):1688–1699.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117–2128.
  • Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020 Oct 8;383(15):1413–1424.
  • Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021 Oct 14;385(16):1451–1461.
  • Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022 Mar;28(3):568–574.
  • Group E-KC, Herrington WG, Staplin N, et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2022 Nov;4.
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019 Jan 24;380(4):347–357.
  • JJV M, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995–2008.
  • Jhund PS, Ponikowski P, Docherty KF, et al. Dapagliflozin and Recurrent Heart Failure Hospitalizations in Heart Failure With Reduced Ejection Fraction: an Analysis of DAPA-HF. Circulation. 2021 May 18;143(20):1962–1972.
  • Solomon SD, Jjv M, Claggett B, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 2022 Sep 27;387(12):1089–1098.
  • Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Oct 8;383(15):1436–1446.
  • Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 2021 Jan 14;384(2):117–128.
  • Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med. 2021 Jan 14;384(2):129–139.
  • Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644–657.
  • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295–2306.
  • Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020 Oct 8;383(15):1425–1435.
  • Cosentino F, Cannon CP, Cherney DZI, et al. Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: results of the VERTIS CV Trial. Circulation. 2020 Dec 8;142(23):2205–2215.
  • Williams DM, Nawaz A, Sodium-Glucose Co-Transporter EM. 2 (SGLT2) Inhibitors: are They All the Same? A Narrative Review of Cardiovascular Outcome Trials. Diabetes Ther. 2021 Jan;12(1):55–70.
  • Srinivas N, Sarnaik MK, Modi S, et al. Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitors: delving Into the Potential Benefits of Cardiorenal Protection Beyond the Treatment of Type-2 Diabetes Mellitus. Cureus. 2021 Aug;13(8):e16868.
  • Pabel S, Hamdani N, Luedde M, et al. SGLT2 Inhibitors and Their Mode of Action in Heart Failure-Has the Mystery Been Unravelled? Curr Heart Fail Rep. 2021 Oct;18(5):315–328.
  • Varadhan A, Stephan K, Gupta R, et al. Growing role of SGLT2i in heart failure: evidence from clinical trials. Expert Rev Clin Pharmacol. 2022 Feb;15(2):147–159.
  • Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021 May 14;128(10):1487–1513.
  • Ferrannini E, Baldi S, Frascerra S, et al. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes. 2016 May;65(5):1190–1195.
  • Verma S, Rawat S, Ho KL, et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic Transl Sci. 2018 Oct;3(5):575–587.
  • Nielsen R, Moller N, Gormsen LC, et al. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation. 2019 Apr 30;139(18):2129–2141.
  • Wakabayashi S, Hisamitsu T, Nakamura TY. Regulation of the cardiac Na(+)/H(+) exchanger in health and disease. J Mol Cell Cardiol. 2013 Aug;61:68–76.
  • Baartscheer A, Schumacher CA, Wust RC, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017 Mar;60(3):568–573.
  • Bertero E, Prates Roma L, Ameri P, et al. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res. 2018 Jan 1;114(1):12–18.
  • Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia. 2018 Mar;61(3):722–726.
  • Bell RM, Yellon DM. SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol. 2018 6;Jun(6):435–437.
  • Pitt B, Bhatt DL. Does SGLT1 Inhibition Add Benefit to SGLT2 Inhibition in Type 2 Diabetes? Circulation. 2021 Jul 6;144(1):4–6.
  • van Woerden G, van Veldhuisen DJ, Manintveld OC, et al. Epicardial Adipose Tissue and Outcome in Heart Failure With Mid-Range and Preserved Ejection Fraction. Circ Heart Fail. 2022 Mar;15(3):e009238.
  • Van de Voorde J, Pauwels B, Boydens C, et al. Adipocytokines in relation to cardiovascular disease. Metabolism. 2013 Nov;62(11):1513–1521.
  • Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018 Jan 4;17(1):6.
  • Wu P, Wen W, Li J, et al. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm Metab Res. 2019 Aug;51(8):487–494.
  • Requena-Ibanez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: from the EMPA-TROPISM Study. JACC Heart Fail. 2021 Aug;9(8):578–589.
  • Luo G, Jian Z, Zhu Y, et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med. 2019 May;43(5):2033–2043.
  • Cardioprotective PM. Effects of Sirtuin-1 and Its Downstream Effectors: potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circ Heart Fail. 2020 Sep;13(9):e007197.
  • Esterline RL, Vaag A, Oscarsson J, et al. MECHANISMS IN ENDOCRINOLOGY: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol. 2018 Apr;178(4):R113–R125.
  • Santulli G. Cardioprotective effects of autophagy: eat your heart out, heart failure! Sci Transl Med. 2018 May 30;10(443):eaau00462.
  • Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018 May;15:335–346.
  • Hawley SA, Ford RJ, Smith BK, et al. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels. Diabetes. 2016 Sep;65(9):2784–2794.
  • Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019 Feb 2;18(1):15.
  • Uthman L, Homayr A, Juni RP, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor alpha-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–886.
  • Verma S, Garg A, Yan AT, et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME Trial? Diabetes Care. 2016 Dec;39(12):e212–e213.
  • Shao Q, Meng L, Lee S, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019 Nov 28;18(1):165.
  • Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019 Apr 23;73(15):1931–1944.
  • Gaspari T, Spizzo I, Liu H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018 Jan;15(1):64–73.
  • Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018 Mar;15(197):46–55.
  • Durante W, Behnammanesh G, Peyton KJ. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and Arterial Remodeling. Int J Mol Sci. 2021 Aug 16;22(16):8786.
  • Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019 Mar 29;18(1):44.
  • Tsimihodimos V, Filippatos TD, Filippas-Ntekouan S, et al. Renoprotective effects of SGLT2 inhibitors: beyond glucose reabsorption inhibition. Curr Vasc Pharmacol. 2017;15(2):96–102.
  • Mordi NA, Mordi IR, Singh JS, et al. Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: the RECEDE-CHF Trial. Circulation. 2020 Nov 3;142(18):1713–1724.
  • Griffin M, Rao VS, Ivey-Miranda J, et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020 Sep 15;142(11):1028–1039.
  • Activation PM. and Inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation. 2017 Oct 17;136(16):1548–1559.
  • Thomas MC. Renal effects of dapagliflozin in patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2014 Jun;5(3):53–61.
  • Fathi A, Vickneson K, Singh JS. SGLT2-inhibitors; more than just glycosuria and diuresis. Heart Fail Rev. 2021 May;26(3):623–642.
  • Filippatos TD, Liontos A, Papakitsou I, et al. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgrad Med. 2019 Mar;131(2):82–88.
  • Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018 Mar;20(3):479–487.
  • Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014 Oct;35(7):391–404.
  • Hare JM, Johnson RJ. Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation. 2003 Apr 22;107(15):1951–1953.
  • Sanidas EA, Papadopoulos DP, Hatziagelaki E, et al. Sodium glucose cotransporter 2 (SGLT2) inhibitors across the spectrum of Hypertension. Am J Hypertens. 2020 Mar 13;33(3):207–213.
  • Liakos CI, Papadopoulos DP, Sanidas EA, et al. Blood pressure-lowering effect of newer antihyperglycemic Agents (SGLT-2 inhibitors, GLP-1 receptor agonists, and DPP-4 Inhibitors). Am J Cardiovasc Drugs. 2021 Mar;21(2):123–137.
  • Weber MA, Mansfield TA, Cain VA, et al. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016 Mar;4(3):211–220.
  • Mazer CD, Hare GMT, Connelly PW, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020 Feb 25;141(8):704–707.
  • Dick SA, Epelman S. Chronic heart failure and inflammation: what do we really know? Circ Res. 2016 Jun 24;119(1):159–176.
  • Iannantuoni F, MdM A, Diaz-Morales N, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019 Nov 1;8(11):1814.
  • Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019 Jul;62(7):1154–1166.
  • Leng W, Wu M, Pan H, et al. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS-NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Ann Transl Med. 2019 Sep;7(18):429.
  • Lee N, Heo YJ, Choi SE, et al. Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-kappaB, MKK7/JNK, and JAK2/STAT1 signalling pathways. J Immunol Res. 2021;2021:9944880.
  • Byrne NJ, Matsumura N, Maayah ZH, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail. 2020 Jan;13(1):e006277.
  • Butts B, Gary RA, Dunbar SB, et al. The Importance of NLRP3 inflammasome in heart failure. J Card Fail. 2015 Jul;21(7):586–593.
  • Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015 Mar;21(3):263–269.
  • Cefalu WT, Stenlof K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia. 2015 Jun;58(6):1183–1187.
  • Yan Y, Liu B, Du J, et al. SGLT2i versus ARNI in heart failure with reduced ejection fraction: a systematic review and meta-analysis. ESC Heart Fail. 2021 Jun;8(3):2210–2219.
  • Cox ZL, Collins SP, Aaron M, et al. Efficacy and safety of dapagliflozin in acute heart failure: rationale and design of the DICTATE-AHF trial. Am Heart J. 2021 Feb;232:116–124.
  • Dapagliflozin and effect on cardiovascular events in acute heart failure - thrombolysis in myocardial infarction 68 (DAPA ACT HF-TIMI 68 trial). ClinicalTrials.gov. [cited 2021 Dec 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04363697
  • Harrington J, Udell JA, Jones WS, et al. Empagliflozin in patients post myocardial infarction rationale and design of the EMPACT-MI trial. Am Heart J. 2022 May;17(253):86–98.
  • Dapagliflozin Effects on Cardiovascular Events in Patients With an Acute Heart Attack (DAPA-MI). ClinicalTrials.gov. [cited 2023 Jan 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT04564742
  • Unnikrishnan AG, Kalra S, Purandare V, et al. Genital Infections with Sodium Glucose Cotransporter-2 Inhibitors: occurrence and Management in Patients with Type 2 Diabetes Mellitus. Indian J Endocrinol Metab. 2018 Nov-Dec;22(6):837–842.
  • Plewa MC, Bryant M, King-Thiele R. Euglycemic Diabetic Ketoacidosis. StatPearls. Treasure Island (FL) 2022.
  • Bailey CJ, Day C, Bellary S. Renal protection with SGLT2 inhibitors: effects in acute and chronic kidney disease. Curr Diab Rep. 2022 Jan;22(1):39–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.