362
Views
0
CrossRef citations to date
0
Altmetric
Review

TYK2 as a novel therapeutic target in psoriasis

, , & ORCID Icon
Pages 549-558 | Received 07 Feb 2023, Accepted 24 May 2023, Published online: 07 Jun 2023

References

  • James L, Abate D, Abate K, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018 Nov 10;392(10159):1789–1858.
  • Damiani G, Bragazzi NL, Karimkhani Aksut C, et al. The global, regional, and national burden of psoriasis: results and insights from the global burden of disease 2019 study. Front Med. 2021;8:743180.
  • Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol. 1985 Sep;13(3):450–456.
  • Martin P, McGovern A, Orozco G, et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun. 2015 Nov 30;6(1):10069. doi: 10.1038/ncomms10069
  • Dendrou CA, Cortes A, Shipman L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016 Nov 02;8(363):363ra149.
  • Hawkes JE, Yan BY, Chan TC, et al. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018 Sep 15;201(6):1605–1613.
  • Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021 Nov 26;6(1):402.
  • Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018 12;27(12):1984–2009. doi: 10.1002/pro.3519
  • Welsch K, Holstein J, Laurence A, et al. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol. 2017 Jul;47(7):1096–1107.
  • Cochez PM, Michiels C, Hendrickx E, et al. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model. Eur J Immunol. 2016 Jun;46(6):1449–1459.
  • Ghoreschi K, Thomas P, Breit S, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med. 2003 Jan;9(1):40–46.
  • Witte E, Kokolakis G, Witte K, et al. IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol. 2014 Nov;134(11):2757–2767.
  • FDA. SOTYKTU™ (deucravacitinib) tablets, for oral use. Initial U.S. Approval: 2022. [cited 2022 May 2]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214958s000lbl.pdf
  • Tsoi LC, Spain SL, Knight J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012 Dec;44(12):1341–1348. doi: 10.1038/ng.2467
  • Gorman JA, Hundhausen C, Kinsman M, et al. The TYK2-P1104A autoimmune protective variant limits coordinate signals required to generate specialized T cell subsets. Front Immunol. 2019;10:44.
  • Tsoi LC, Stuart PE, Tian C, et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun. 2017 Dec 05;8(1):15382. doi: 10.1038/ncomms15382
  • Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007 Jul 21;370(9583):263–271.
  • Gladman DD. Psoriatic arthritis. Dermatol Ther. 2009;22(1):40–55.
  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Primers. 2016 Nov 24;2(1):16082. doi: 10.1038/nrdp.2016.82
  • Huang YH, Kuo CF, Huang LH, et al. Familial aggregation of psoriasis and co-aggregation of autoimmune diseases in affected families. J Clin Med. 2019 Jan 18;8(1):115. doi: 10.3390/jcm8010115
  • LOnoberg AS, Skov L, Skytthe A, et al. Heritability of psoriasis in a large twin sample. Br J Dermatol. 2013 Aug;169(2):412–416.
  • Enlund F, Samuelsson L, Enerback C, et al. Analysis of three suggested psoriasis susceptibility loci in a large Swedish set of families: confirmation of linkage to chromosome 6p (HLA region), and to 17q, but not to 4q. Hum Hered. 1999 Jan;49(1):2–8.
  • Ogawa K, Okada Y. The current landscape of psoriasis genetics in 2020. J Dermatol Sci. 2020 Jul;99(1):2–8.
  • Hwang ST, Nijsten T, Elder JT. Recent highlights in psoriasis research. J Invest Dermatol. 2017 Mar;137(3):550–556.
  • Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007 Feb;80(2):273–290.
  • Tsunemi Y, Saeki H, Nakamura K, et al. Interleukin-12 p40 gene (IL12B) 3’-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci. 2002 Nov;30(2):161–166.
  • Strange A, Capon F, Spencer CC, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010 Nov;42(11):985–990.
  • Tang H, Jin X, Li Y, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014 Jan;46(1):45–50.
  • Okada Y, Han B, Tsoi LC, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014 Aug 07;95(2):162–172.
  • Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet. 2016 Jul;48(7):740–746.
  • Hirata J, Hirota T, Ozeki T, et al. Variants at HLA-A, HLA-C, and HLA-DQB1 confer risk of psoriasis vulgaris in Japanese. J Invest Dermatol. 2018 Mar;138(3):542–548.
  • Tamari M, Saeki H, Hayashi M, et al. An association study of 36 psoriasis susceptibility loci for psoriasis vulgaris and atopic dermatitis in a Japanese population. J Dermatol Sci. 2014 Nov;76(2):156–157.
  • Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012 Jan 29;44(3):291–296.
  • Di Meglio P, Di Cesare A, Laggner U, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE. 2011 Feb 22;6(2):e17160.
  • Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006 Dec 01;314(5804):1461–1463.
  • Rueda B, Orozco G, Raya E, et al. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2008 Oct;67(10):1451–1454.
  • Di Meglio P, Villanova F, Napolitano L, et al. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients. J Invest Dermatol. 2013 Oct;133(10):2381–2389.
  • Schaub MA, Boyle AP, Kundaje A, et al. Linking disease associations with regulatory information in the human genome. Genome Res. 2012 Sep;22(9):1748–1759.
  • Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem. 2016 Jun 02;85(1):227–264.
  • Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013 Aug;41(15):7429–7437.
  • Claussnitzer M, Cho JH, Collins R, et al. A brief history of human disease genetics. Nature. 2020 01;577(7789):179–189. doi: 10.1038/s41586-019-1879-7
  • Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: moving from the lab to the clinic. Science. 2019 Sep 27;365(6460):1409–1413.
  • Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015 Aug;47(8):856–860. doi: 10.1038/ng.3314
  • Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013 Jul;45(7):730–738.
  • Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010 Dec;42(12):1118–1125.
  • Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013 Nov;45(11):1353–1360.
  • Diogo D, Bastarache L, Liao KP, et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE. 2015;10(4):e0122271. doi: 10.1371/journal.pone.0122271
  • Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015 Apr;47(4):381–386.
  • Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, et al. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr. 2012 Jun;160(6):1055–1057.
  • Ihle JN. Cytokine receptor signalling. Nature. 1995 Oct 19;377(6550):591–594.
  • Darnell JE. Stats and gene regulation. Science. 1997 Sep 12;277(5332):1630–1635.
  • Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012 Apr 20;36(4):503–514.
  • Ishizaki M, Akimoto T, Muromoto R, et al. Involvement of tyrosine kinase-2 in both the IL-12/Th1 and IL-23/Th17 axes in vivo. J Immunol. 2011 Jul 01;187(1):181–189.
  • Rodig SJ, Meraz MA, White JM, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998 May 01;93(3):373–383.
  • Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem. 2022 Jan 27;13(1):1–14.
  • Zhang C, Qi W, Li Y, et al. Discovery of 3-(4-(2-((1. J Med Chem. 2021 Feb 25;64(4):1966–1988.
  • Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996 May;2(5):561–566.
  • Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018 May;17(5):353–377.
  • Sonbol MB, Firwana B, Zarzour A, et al. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms. Ther Adv Hematol. 2013 Feb;4(1):15–35.
  • Dhillon S. Tofacitinib: a review in rheumatoid arthritis. Drugs. 2017 Dec;77(18):1987–2001.
  • Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015 Sep;73(3):395–399.
  • Al-Salama ZT, Scott LJ. Baricitinib: a review in rheumatoid arthritis. Drugs. 2018 May;78(7):761–772.
  • Radi G, Simonetti O, Rizzetto G, et al. Baricitinib: the first jak inhibitor approved in Europe for the Treatment of moderate to severe atopic dermatitis in adult patients. Healthcare (Basel). 2021 Nov 18;9(11):1575.
  • Wrobleski ST, Moslin R, Lin S, et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 2019 Oct 24;62(20):8973–8995.
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2022 Jul 09;88(1):29–39. doi: 10.1016/j.jaad.2022.07.002
  • Warren R, Sofen H, Imafuku S. Pos1046 deucravacitinib long-term efficacy and safety in plaque psoriasis: 2-year results from the Phase 3 POETYK PSO program. The European Alliance Of Associations For Rheumatology. 2022;6(6):s48. doi: 10.25251/skin.6.supp.48
  • Myers Squibb B. An investigational study to evaluate experimental medication BMS-986165 in Japanese participants with moderate-to-severe psoriasis. [cited 2023 Jan 2]; https://clinicaltrials.gov/ct2/show/study/NCT039244272022
  • Mease P, Deodhar A, van der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Annals of the Rheumatic Diseases. 2020;81:815–822.
  • Forman SB, Pariser DM, Poulin Y, et al. TYK2/JAK1 inhibitor PF-06700841 in patients with plaque psoriasis: phase iia, randomized, double-blind, placebo-controlled trial. J Invest Dermatol. 2020 12;140(12):2359–2370.e5. doi: 10.1016/j.jid.2020.03.962
  • Tehlirian C, Singh RSP, Pradhan V, et al. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J Am Acad Dermatol. 2022 Apr 06;87(2):333–342.
  • Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007 Jan;8(1):49–62.
  • Lee SK, Xing J, Catlett IM, et al. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. Eur J Clin Pharmacol. 2017 Jun;73(6):689–698.
  • Papp K, Gordon K, Tha‚àö√üi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in Psoriasis. N Engl J Med. 2018 Oct 04;379(14):1313–1321.
  • Catlett IM, Hu Y, Gao L, et al. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis. J Allergy Clin Immunol. 2021 Nov 10;149(6):2010–2020.e8.
  • Bristol Myers Squibb announces deucravacitinib (BMS-986165) demonstrated superiority to placebo and otezla¬¨√Ü (apremilast) in Pivotal phase 3 psoriasis study¬¨‚Ć [Internet]. Bristol-Myers Squibb; 2020; Nov 3, 2020 [cited May 2, 2022]. 2020: https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Announces-Deucravacitinib-BMS-986165-Demonstrated-Superiority-to-Placebo-and-Otezla-apremilast-in-Pivotal-Phase-3-Psoriasis-Study/default.aspx 2020.
  • Zachariae H. Prevalence of joint disease in patients with psoriasis: implications for therapy. Am J Clin Dermatol. 2003;4(7):441–447.
  • Gollooly K, Zhang Y, Yang X, et al. BMS-986165 is a highly potent and selective allosteric inhibitor of Tyk2, blocks IL-12, IL-23 and type I interferon signaling and provides for robust efficacy in preclinical models of systemic lupus erythematosus and inflammatory bowel disease. ACR Late-Breaking Poster Session. 2016 ACR/ARHP Annual Meeting; Washington, DC; Oct 19, 2016 2016.
  • Bristol Myers Squibb provides update on phase 2 study of deucravacitinib in patients with moderate to severe ulcerative colitis [internet]. Bristol Myers Squibb 2021 Sep 10 [updated 2022 May 29; cited 2022 May 29]. Available from: https://news.bms.com/news/details/2021/Bristol-Myers-Squibb-Provides-Update-on-Phase-2-Study-of-Deucravacitinib-in-Patients-With-Moderate-to-Severe-Ulcerative-Colitis/default.aspx
  • Takeda. Takeda announces positive results in phase 2b study of investigational TAK-279, an oral, once-daily TYK2 inhibitor, in people with moderate-to-severe plaque psoriasis [internet]. 2023. [cited 2023 Apr 23]; Available from: https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279
  • CliniticalTrial.gov. VTX958 for the treatment of moderately to severely active crohn’s disease (harmony-CD): ClinicalTrial.Gov; [updated 2023 Apr 23; cited 2023 23 Apr 2023]. Available from: https://clinicaltrials.gov/ct2/show/NCT05688852
  • Damiani G, Cazzaniga S, Conic RR, et al. Pruritus characteristics in a large Italian cohort of psoriatic patients. J Eur Acad Dermatol Venereol. 2019 Jul;33(7):1316–1324.
  • Papp KA, Bissonnette R, Gooderham M, et al. Treatment of plaque psoriasis with an ointment formulation of the Janus kinase inhibitor, tofacitinib: a Phase 2b randomized clinical trial. BMC Dermatol. 2016 Oct 03;16(1):15.
  • Han Y, Woo YR, Cho SH, et al. Itch and janus kinase inhibitors. Acta Derm Venereol. 2023 Feb 15;103:adv00869.
  • Membrive Jiménez C, Pérez Ramírez C, Sánchez Martín A, et al. Influence of genetic polymorphisms on response to biologics in moderate-to-severe psoriasis. J Pers Med. 2021 Apr 12;11(4):293.
  • Muñoz-Aceituno E, Martos-Cabrera L, Ovejero-Benito MC, et al. Pharmacogenetics update on biologic therapy in Psoriasis. Med (Kaunas). 2020 Dec 20;56(12):719.
  • Dand N, Duckworth M, Baudry D, et al. HLA-C*06: 02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J Allergy Clin Immunol. 2019 Jun;143(6):2120–2130.
  • Song GG, Seo YH, Kim JH, et al. Association between TNF-α (-308 A/G, -238 A/G, -857 C/T) polymorphisms and responsiveness to TNF-α blockers in spondyloarthropathy, psoriasis and Crohn’s disease: a meta-analysis. Pharmacogenomics. 2015;16(12):1427–1437. doi: 10.2217/pgs.15.90
  • Menghi F, Liu ET. Functional genomics of complex cancer genomes. Nat Commun. 2022 Oct 07;13(1):5908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.