255
Views
3
CrossRef citations to date
0
Altmetric
Articles

Influence of nanomaterials on properties of lime and hemp/lime composites for energy efficient wall design

ORCID Icon, ORCID Icon & ORCID Icon
Pages 256-276 | Received 13 Nov 2018, Accepted 31 Jan 2019, Published online: 01 Mar 2019

References

  • Alam, M., & O’Flaherty, F. (2017, 27–28 Jul). Thermal characterisation of composite insulation panels using a vacuum insulated core, SOLARIS Conference 2017. London: Brunel University.
  • Aligizaki, K. K. (2006). Pore structure of cement-based materials, testing, interpretation and requirements, modern concrete technology. London: CRC Press.
  • Alvarez, J. I., Fernandez, J. M., Navarro-Blasco, I., Duran, A., & Sirera, R. (2013, June). Microstructural consequences of nanosilica addition on aerial lime binding materials: Influence of different drying conditions. Materials Characterization, 80, 36–49. doi: 10.1016/j.matchar.2013.03.006
  • Amziane, S., & Arnaud, L. (Eds.). (2013). Bio-aggregate-based building materials, applications to hemp concrete. London: ISTE Ltd and John Wiley & Sons Inc.
  • Arnaud, L., Cerezo, V., & Samri, D. (2006). Global approach for the design of building material containing lime and vegetable particles. In The sixth international symposium on cement and concrete (pp. 1261–1265). Xi'an, China: China Scientific Books.
  • Barbero, S., Dutto, M., Ferrua, C., & Pereno, A. (2014). Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison. Energy and Buildings, 77, 40–47. doi: 10.1016/j.enbuild.2014.03.037
  • Barnat-Hunek, D., Smarzewski, P., & Fic, S. (2015). Mechanical and thermal properties of hemp-lime composites. Composites Theory and Practice, 15(1), 21–27.
  • Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M. M., Bali, A., & Quéneudec, M. (2007). Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling. Construction and Building Materials, 21, 662–668. doi: 10.1016/j.conbuildmat.2005.12.008
  • BEIS. (2018). Department for business, energy and industrial strategy. Energy consumption in the UK July 2018. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/729317/Energy_Consumption_in_the_UK__ECUK__2018.pdf
  • Benfratello, S., Capitano, C., Peri, G., Rizzo, G., Scaccianoce, G., & Sorrentino, G. (2013). Thermal and structural properties of a hemp–lime biocomposite. Construction and Building Materials, 48, 745–754, 11. doi: 10.1016/j.conbuildmat.2013.07.096
  • Bhagat, U. K., More, P. V., & Khanna, P. K. (2015). Study of zinc oxide nanofluids for heat transfer application. SAJ Nanoscience Nanotechology, 1, 1–7.
  • Brás, A., Gonçalves, F., & Faustino, P. (2014). Cork-based mortars for thermal bridges correction in a dwelling: Thermal performance and cost evaluation. Energy and Buildings, 72, 296–308. doi: 10.1016/j.enbuild.2013.12.022
  • BRE. (2015). The cost of poor housing in the European Union, Simon Nicol, Mike Roys, David Ormandy and Veronique Ezratty. Retrieved from www.bre.co.uk/filelibrary/Briefing%20papers/92993_BRE_Poor-Housing_in_-Europe.pdf
  • Brzyski, P., Barnat-Hunek, D., Suchorab, Z., & Łagód, G. (2017). Composite materials based on Hemp and Flax for low-energy buildings. Materials, 10:510. doi: 10.3390/ma10050510
  • BS EN 1015-11. (1999). Methods of test for mortar for masonry — Part 11: Determination of flexural and compressive strength of hardened mortar. ISBN 0 580 35469 5, 15 November 1999, amended January 2007.
  • BS EN 1015-3. (1999). Methods of test for mortar for masonry — Part 3: Determination of consistence of fresh mortar (by flow table). ISBN 0 580 30746 8, 15 June 1999, amended January 2007.
  • BS EN 12664. (2001). Thermal performance of building materials and products–determination of thermal resistance by means of guarded hot plate and heat flow meter methods–dry and moist products of medium and low thermal resistance. (2001).
  • BS ISO 15901-1. (2016). Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption. Mercury porosimetry.
  • Cigasova, J., Stevulova, N., Terpakova, E., Sicakova, A., & Junak, J. (2013). Modified hemp hurds as a filler in composites, international multidisciplinary scientific geoconference: SGEM: Surveying geology & mining ecology management, p. 385.
  • Collet, F., & Prétot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Construction and Building Materials, 65, 612–619. doi: 10.1016/j.conbuildmat.2014.05.039
  • Committee on Climate Change. (2008). UK regulations: The climate change act. Retrieved from www.theccc.org.uk/tackling-climate-change/the-legal-landscape/global-action-on-climate-change/
  • De Bruijn, P. B., Jeppsson, K. H., Sandin, K., & Nilsson, C. (2009). Mechanical properties of lime–hemp concrete containing shives and fibres. Biosystems Engineering, 103(4), 474–479. doi: 10.1016/j.biosystemseng.2009.02.005
  • Elfordy, S., Lucas, F., Tancret, F., Scudeller, Y., & Goudet, L. (2008). Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Construction and Building Materials, 22, 2116–2123. doi: 10.1016/j.conbuildmat.2007.07.016
  • Evrard, A. (Ed.). (2003). Betons de Chanvre, Synthese des proprietes physiques [Hemp Concretes, a Synthesis of Physical Properties]. Report. Construire en Chanvre, Saint Vale rien (in French).
  • Grigoriadis, K., Mangat, P. S., & Abubakri, S. (2017). Bond between microwave cured repair and concrete substrate. Materials and Structures, 50, 125. doi: 10.1617/s11527-016-0990-6
  • Hakamy, A., Shaikh, F., & Low, I. M. (2014). Thermal and mechanical properties of hemp fabric-reinforced nanoclay–cement nanocomposites. Journal of Materials Science, 49, 1684–1694. doi: 10.1007/s10853-013-7853-0
  • Hazarika, A., & Magi, T. K. (2014). Modification of softwood by monomers and nanofillers. Defence Science Journal, [S.l.], 64(3), 262–272. ISSN 0976464X. Retrieved from http://publications.drdo.gov.in/ojs/index.php/dsj/article/view/7325/4034. Date accessed: 16 Oct 2018 doi: 10.14429/dsj.64.7325
  • HM Government, The Building Regulations. (2010). Conservation of fuel and power, Approved Document L1A, 2013 Edition incorporating 2016 amendments - for use in England. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/540326/BR_PDF_AD__L1A__2013_with_2016_amendments.pdf
  • Jittabut, P. (2015). Effect of nanosilica on mechanical and thermal properties of cement composites for thermal energy storage materials. Energy Procedia, 79, 10–17. doi: 10.1016/j.egypro.2015.11.454
  • Kinnane, O., McGranaghan, G., Walker, R., Pavia, S., Byrne, G., & Robinson, A. (2015). Experimental investigation of thermal inertia properties in hemp-lime concrete walls. In Proceedings of the 10th conference on advanced building skins (pp. 942–949). Bern: Author.
  • Kiran, M., Nandanwar, A., Naidu, M. V., & Rajulu, K. C. V. (2012). Effect of density on thermal conductivity of bamboo mat board. International Journal of Agriculture and Forestry, 2, 257–261. doi: 10.5923/j.ijaf.20120205.09
  • Kymäläinen, H. R., & Sjöberg, A. M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261–1269. doi: 10.1016/j.buildenv.2007.03.006
  • Mangat, P. S., Abubakri, S., & Grigoriadis, K. (2017). Bond of steel reinforcement with microwave cured concrete repair mortars. Materials and Structures, 50, 249. doi: 10.1617/s11527-017-1115-6
  • Mangat, P., Grigoriadis, K., & Abubakri, S. (2016). Microwave curing parameters of in-situ concrete repairs. Construction and Building Materials, 112, 856–866. doi: 10.1016/j.conbuildmat.2016.03.007
  • Mangat, P., & Ojedokun, O. (2018). Pore size distribution of an alkali activated cementitious (AACM) mortar. Influence of curing on pore properties and strength of alkali activated mortars. Construction and Building Materials, 188, 337–348. doi: 10.1016/j.conbuildmat.2018.07.180
  • O'Flaherty, F., & Alam, M. (2018). Thermal and sound insulation performance assessment of vacuum insulated composite insulation panels for building façades. Advances in Building Energy Research, doi: 10.1080/17512549.2018.1520645
  • Schiavoni, S., Alessandro, F. D., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988–1011. doi: 10.1016/j.rser.2016.05.045
  • Stacy, S. C., Zhang, X., Pantoya, M., & Weeks, B. (2014). The effects of density on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles. International Journal of Heat and Mass Transfer, 73, 595–599, 6. doi: 10.1016/j.ijheatmasstransfer.2014.02.050
  • Venkatesan, S., Khatiwada, D., Zhang, C., & Qiao, C. (2015). Enhanced Lifetime of polymer solar cells by surface passivation of metal oxide Buffer layers. ACS Applied Materials & Interfaces, 7(29), 16093–16100. doi: 10.1021/acsami.5b04687
  • Walker, R., & Pavía, S. (2014). Moisture transfer and thermal properties of hemp–lime concretes. Construction and Building Materials, 64, 270–276. doi: 10.1016/j.conbuildmat.2014.04.081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.