703
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparative assessment of insulated concrete wall technologies and wood-frame walls in residential buildings: a multi-criteria analysis of hygrothermal performance, cost, and environmental footprints

, &
Pages 466-498 | Received 06 Dec 2018, Accepted 11 Mar 2019, Published online: 22 Apr 2019

References

  • Aldawoud, A. (2017). Windows design for maximum cross-ventilation in buildings. Advances in Building Energy Research, 11(1), 67–86.
  • Al-Sanea, S. A., & Zedan, M. F. (2012). Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584–593. doi: 10.1016/j.apenergy.2012.04.038
  • Amirifard, F., Sharif, S. A., & Nasiri, F. (2018). Application of passive measures for energy conservation in buildings – a review. Advances in Building Energy Research, 0(0), 1–34. doi: 10.1080/17512549.2018.1488617
  • Amiri fard, F., & Nasiri, F. (2018). Integrated assessment-optimization approach for building refurbishment projects: Case study of passive energy measures. Journal of Computing in Civil Engineering, doi: 10.1061/(ASCE)CP.1943-5487.0000785
  • Armstrong, M. M., Elmahdy, A. H., Swinton, M. C., & Parekh, A. (2008). Selecting residential window glazing for optimum energy performance. Construction Technology Update, 71, 1–8.
  • ASHRAE160. (2009). Criteria for moisture-control design analysis in buildings. ASHRAE Atlanta, GA.
  • ASHRAE. (2013a). ASHRAE handbook: Fundamentals 2013. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
  • ASHRAE, A. H. F. (2013b). Chapter 25. Heat, air, and moisture control in building assemblies – Fundamentals.
  • ASHRAE, A. H. F. (2013c). Chapter 26. Heat, air, and moisture control in building assemblies – Material properties.
  • ASHRAE, A. H. F. (2013d). Chapter 27. Heat, air, and moisture control in building assemblies – Examples.
  • Aste, N., Angelotti, A., & Buzzetti, M. (2009). The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy and Buildings, 41(11), 1181–1187. doi: 10.1016/j.enbuild.2009.06.005
  • Baker, N. V. (1987). Passive and low energy building design for tropical island climates. London: Commonwealth Secretariat.
  • Balali, V., Zahraie, B., & Roozbahani, A. (2014). A comparison of AHP and PROMETHEE family decision making methods for selection of building structural system. American Journal of Civil Engineering and Architecture, 2(5), 149–159. doi: 10.12691/ajcea-2-5-1
  • Balcomb, J. D. (1992). Passive solar buildings (Vol. 7). Boston, MA: MIT Press.
  • Bank of Canada. (2015). Retrieved September 1, 2016, from http://www.bankofcanada.ca/rates/related/inflation-calculator
  • Beaulieu, P., Bomberg, M., Cornick, S., Dalgliesh, A., Desmarais, G., Djebbar, R., … Maref, W. (2002). Final report from Task 8 of MEWS Project (T8-03)-Hygrothermal response of exterior wall systems to climate loading: Methodology and interpretation of results for stucco, EIFS, masonry and siding clad wood-frame walls. Ottawa: Institute for Research in Construction, National Research Council Canada. 168.
  • Bomberg, M. (2002). Heat, air and moisture control in walls of Canadian Houses: A review of the historic basis for current practices. Journal of Thermal Envelope and Building Science, 26(1), 3–31. doi: 10.1106/109719602025857
  • Brock, L. (2005). Designing the exterior wall: An architectural guide to the vertical envelope. Hoboken: Wiley.
  • Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi: 10.1016/j.rser.2013.08.037
  • Capozzoli, A., Gorrino, A., & Corrado, V. (2013). A building thermal bridges sensitivity analysis. Applied Energy, 107, 229–243. doi: 10.1016/j.apenergy.2013.02.045
  • Chvatal, K. M. S., & Corvacho, H. (2009). The impact of increasing the building envelope insulation upon the risk of overheating in summer and an increased energy consumption. Journal of Building Performance Simulation, 2(4), 267–282.
  • Cochran, K. M., & Townsend, T. G. (2010). Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Management, 30(11), 2247–2254. doi: 10.1016/j.wasman.2010.04.008
  • Cochran, K., Townsend, T., Reinhart, D., & Heck, H. (2007). Estimation of regional building-related C&D debris generation and composition: Case study for Florida, US. Waste Management, 27(7), 921–931. doi: 10.1016/j.wasman.2006.03.023
  • Dantata, N., Touran, A., & Wang, J. (2005). An analysis of cost and duration for deconstruction and demolition of residential buildings in Massachusetts. Resources, Conservation and Recycling, 44(1), 1–15. doi: 10.1016/j.resconrec.2004.09.001
  • Data Reed Construction. (2016). RS Means building construction cost data. Kingston, MA: 74th Annual edition RS Means.
  • De Freitas, V. P., Abrantes, V., & Crausse, P. (1996). Moisture migration in building walls – analysis of the interface phenomena. Building and Environment, 31(2), 99–108.
  • Delsante, A. (2005). Is the new generation of building energy rating software up to the task? A review of AccuRate. Building Australia’s Future 2005, (September), 11–15. Retrieved from http://www.hearne.com.au/attachments/Accurate Reviewer’s Guide.pdf
  • Dhillon, B. S. (2009). Life cycle costing for engineers. Boca Raton, FL: CRC Press.
  • Dodoo, A., Gustavsson, L., & Sathre, R. (2012). Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building. Applied Energy, 92, 462–472. doi: 10.1016/j.apenergy.2011.11.017
  • Doebber, I., & Ellis, M. W. (2005). Thermal performance benefits of precast concrete panel and integrated concrete form technologies for residential construction. ASHRAE Transactions, 111(2), 340–352.
  • Dylewski, R., & Adamczyk, J. (2011). Economic and environmental benefits of thermal insulation of building external walls. Building and Environment, 46(12), 2615–2623. doi: 10.1016/j.buildenv.2011.06.023
  • Fang, Z., Li, N., Li, B., Luo, G., & Huang, Y. (2014). The effect of building envelope insulation on cooling energy consumption in summer. Energy and Buildings, 77, 197–205.
  • Frenette, C. D., Derome, D., Beauregard, R., & Salenikovich, A. (2008). Identification of multiple criteria for the evaluation of light-frame wood wall assemblies. Journal of Building Performance Simulation, 1(4), 221–236. doi: 10.1080/19401490802527661
  • Gajda, J. (2001). Energy use of single-family houses with various exterior walls. Skokie, IL: CD026, Portland Cement Association.
  • Ginevičius, R., Podvezko, V., & Raslanas, S. (2008). Evaluating the alternative solutions of wall insulation by multicriteria methods. Journal of Civil Engineering and Management, 14(4), 217–226. doi: 10.3846/1392-3730.2008.14.20
  • Haapio, A., & Viitaniemi, P. (2008). A critical review of building environmental assessment tools. Environmental Impact Assessment Review, 28(7), 469–482. doi: 10.1016/j.eiar.2008.01.002
  • Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. doi: 10.1016/j.energy.2018.09.019
  • Harris, D. J. (1999). A quantitative approach to the assessment of the environmental impact of building materials. Building and Environment, 34(6), 751–758.
  • Hill, D., & Monsour, R. (2006). Monitored performance of an insulating concrete form multi-unit residential building, Draft Final Report, prepared by Enermodal Engineering Limited.
  • Hirsch, J. J. (2010). eQuest, the QUick energy simulation tool. DOE2 Com, Epub, http://www.Doe2.Com/Equest
  • Hossaini, N., Reza, B., Akhtar, S., Sadiq, R., & Hewage, K. (2015). AHP based life cycle sustainability assessment (LCSA) framework: A case study of six storey wood frame and concrete frame buildings in Vancouver. Journal of Environmental Planning and Management, 58(7), 1217–1241. doi: 10.1080/09640568.2014.920704
  • Huang, J., Winkelmann, F. C., Buhl, F. F., Pedersen, C. O., Fisher, D. E., Liesen, R. J., … Lawrie, L. K. (1999). Linking the COMIS multi-zone airflow model with the EnergyPlus building energy simulation program. In Proceedings of the 6-th IBPSA conference (Vol. 2, pp. 1065–1070).
  • Hydro-quebec. (2016). Retrieved November 10, from http://www.hydroquebec.com/residential/customer-space/account-and-billing/understanding-bill/residential-rates/rate-d.htm
  • Institute, A. S. M. (2016). Athena impact estimator for buildings. Retrieved November 22, 2018, from http://www.athenasmi.org
  • ISEDC. (2016). Innovation, science and economic development Canada. Retrieved August 2, 2016, from www.ic.gc.ca
  • Islam, H., Jollands, M., & Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings – A review. Renewable and Sustainable Energy Reviews, 42, 129–140. doi: 10.1016/j.rser.2014.10.006
  • Islam, H., Jollands, M., Setunge, S., Ahmed, I., & Haque, N. (2014). Life cycle assessment and life cycle cost implications of wall assemblages designs. Energy and Buildings, 84, 33–45. doi: 10.1016/j.enbuild.2014.07.041
  • Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J., & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162. doi: 10.1016/j.autcon.2014.05.013
  • Jerman, M., Keppert, M., Výborný, J., & Černý, R. (2013). Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials, 41, 352–359. doi: 10.1016/j.conbuildmat.2012.12.036
  • Kabak, M., Köse, E., Kirilmaz, O., & Burmaoǧlu, S. (2014). A fuzzy multi-criteria decision making approach to assess building energy performance. Energy and Buildings, 72, 382–389. doi: 10.1016/j.enbuild.2013.12.059
  • Kahhat, R., Crittenden, J., Sharif, F., Fonseca, E., Li, K., Sawhney, A., & Zhang, P. (2009). Environmental impacts over the life cycle of residential buildings using different exterior wall systems. Journal of Infrastructure Systems, 15(3), 211–221. doi: 10.1061/(ASCE)1076-0342(2009)15:3(211)
  • Kosny, J. (2001). Advances in residential wall technologies-simple ways of decreasing the whole building energy consumption. ASHRAE Transactions, 107(PART), 421–432. doi: 10.1023/B
  • Künzel, H. M. (1995). Simultaneous heat and moisture transport in building components. One-and Two-Dimensional calculation using simple parameters. Stuttgart: IRB-Verlag.
  • Kuzman, M. K., Grošelj, P., Ayrilmis, N., & Zbašnik-Senegačnik, M. (2013). Comparison of passive house construction types using analytic hierarchy process. Energy and Buildings, 64, 258–263. doi: 10.1016/j.enbuild.2013.05.020
  • Lee, W. L., & Burnett, J. (2008). Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED. Building and Environment, 43(11), 1882–1891. doi: 10.1016/j.buildenv.2007.11.007
  • Li, H. X., Patel, D., Al-Hussein, M., Yu, H., & Gül, M. (2018). Stakeholder studies and the social networks of NetZero energy homes (NZEHs). Sustainable Cities and Society, 38(December 2017), 9–17. doi: 10.1016/j.scs.2017.12.014
  • Li, D. H. W., Yang, L., & Lam, J. C. (2013). Zero energy buildings and sustainable development implications - A review. Energy, 54, 1–10. doi: 10.1016/j.energy.2013.01.070
  • Ma, P., Wang, L. S., & Guo, N. (2015). Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude. Applied Energy, 146, 84–91. doi: 10.1016/j.apenergy.2015.01.103
  • Maalouf, C., Le, A. D. T., Umurigirwa, S. B., Lachi, M., & Douzane, O. (2014). Study of hygrothermal behaviour of a hemp concrete building envelope under summer conditions in France. Energy and Buildings, 77, 48–57. doi: 10.1016/j.enbuild.2014.03.040
  • Mahlia, T. M. I., & Iqbal, A. (2010). Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives. Energy, 35(5), 2242–2250. doi: 10.1016/j.energy.2010.02.011
  • Mantesi, E., Hopfe, C. J., Glass, J., & Cook, M. J. (2015). Assessment of ICF energy saving potential in whole building performance simulation tools.
  • Marceau, M. L., & VanGeem, M. G. (2002). Life cycle assessment of an insulating concrete form house compared to a wood frame house. Skokie, IL: Portland Cement Association.
  • Maref, W., Armstrong, M. M., Saber, H., Rousseau, M., Ganapathy, G., Nicholls, M., & Swinton, M. C. (2012). Field energy performance of an insulating concrete form (ICF) wall.
  • Mela, K., Tiainen, T., & Heinisuo, M. (2012). Comparative study of multiple criteria decision making methods for building design. Advanced Engineering Informatics, 26(4), 716–726. doi: 10.1080/14719037.2016.1200119
  • Monteiro, H., & Freire, F. (2012). Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy and Buildings, 47, 572–583. doi: 10.1016/j.enbuild.2011.12.032
  • Monteiro, H. I., & Freire, F. M. (2011). Environmental life-cycle impacts of a single-family house in Portugal: Assessing alternative exterior walls with two methods. Gazi University Journal of Science, 24(3), 527–534.
  • Nasiri, F., Mafakheri, F., Adebanjo, D., & Haghighat, F. (2016). Modeling and analysis of renewable heat integration into non-domestic buildings – The case of biomass boilers: A whole life asset-supply chain management approach. Biomass and Bioenergy, 95, 244–256.
  • NRCan. (2016). Energy Efficiency Trends in Canada: 1990–2013. http://oee.nrcan.gc.ca/publications/statistics/trends11/pdf/trends.pdf
  • Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559–3573. doi: 10.1016/j.rser.2012.03.045
  • Parker, P., & Lozinsky, C. (2010). Thermal and Hygrothermal Analysis in Building Envelope Commissioning. In NIBS Building Enclosure Science & Technology Conference. National Institute of Building Sciences (NIBS) (pp. 12–14).
  • Peng, C., & Wu, Z. (2008). In situ measuring and evaluating the thermal resistance of building construction. Energy and Buildings, 40(11), 2076–2082. doi: 10.1016/j.enbuild.2008.05.012
  • Petrie, T. W., Kosny, J., Desjarlais, A. O., Atchley, J. A., Childs, P. W., Ternes, M. P., & Christian, J. E. (2002). How insulating concrete form vs. conventional construction of exterior walls affects whole building energy consumption: Results from a field study and simulation of side-by-side houses. In Proceedings (pp. 1235–1246).
  • Ponder, R. L. (2014). An analysis of insulated concrete forms for use in sustainable military construction. Air Force Institute of Technology, Wright-Patterson, AFB, OH, Graduate School of Engineering and Management.
  • PRé Consultants, S. (2015). SimaPro software. SimaPro Version 8. Retrieved from https://simapro.com/
  • Qiu, K., Haghighat, F., & Guarracino, G. (2007). Thermal behaviour of the diffusive building envelope: State-of-the-art review. Advances in Building Energy Research, 1(1), 213–226.
  • Rajagopalan, N. (2011). Residential life cycle assessment modeling of green buildings and building products. Pittsburgh: University of Pittsburgh.
  • Rajagopalan, N., Bilec, M. M., & Landis, A. E. (2010). Residential life cycle assessment modeling: Comparative case study of insulating concrete forms and traditional building materials. Journal of Green Building, 5(3), 95–106.
  • Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. doi: 10.1016/j.enbuild.2010.05.007
  • Reza, B., Sadiq, R., & Hewage, K. (2011). Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 25(4), 2053–2066. doi: 10.1016/j.conbuildmat.2010.11.041
  • Rojas, G., Wagner, W., Suschek-Berger, J., Pfluger, R., & Feist, W. (2016). Applying the passive house concept to a social housing project in Austria – evaluation of the indoor environment based on long-term measurements and user surveys. Advances in Building Energy Research, 10(1), 125–148.
  • Ruzgys, A., Volvačiovas, R., Ignatavičius, Č, & Turskis, Z. (2014). Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. Journal of Civil Engineering and Management, 20(1), 103–110.
  • Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85–91. doi: 10.1016/S0377-2217(02)00227-8
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.
  • Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process. New York: Springer.
  • Saaty, T. L., & William, A. (2004). Super decisions software. Pittsburgh: RWS.
  • Saber, H. H., Maref, W., Armstrong, M. M., Swinton, M. C., Rousseau, M. Z., & Ganapathy, G. (2010). Benchmarking 3D thermal model against field measurement on the thermal response of an insulating concrete form (ICF) wall in cold climate.
  • Sarkis, J., & Sundarraj, R. P. (2006). Evaluation of enterprise information technologies: A decision model for high-level consideration of strategic and operational issues. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(2), 260–273.
  • Satty, T. L. (2004). Decision making – The analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35.
  • Sharma, A., Saxena, A., Sethi, M., & Shree, V. (2011). Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews, 15(1), 871–875.
  • Simapro. (2015). Simapro 8.
  • Swinton, M. C., Bomberg, M. T., Kumaran, M. K., Normandin, N., & Maref, W. (1999). Performance of thermal insulation on the exterior of basement walls. Construction Technology Update, 36, 1–8.
  • Theißen, S., & Spinler, S. (2014). Strategic analysis of manufacturer-supplier partnerships: An ANP model for collaborative CO2 reduction management. European Journal of Operational Research, 233(2), 383–397. doi: 10.1016/j.ejor.2013.08.023
  • Trechsel, H. R. (2001). Moisture analysis and condensation control in building envelopes. West Conshohocken: ASTM.
  • Tsai, W. H., Lin, S. J., Lee, Y. F., Chang, Y. C., & Hsu, J. L. (2013). Construction method selection for green building projects to improve environmental sustainability by using an MCDM approach. Journal of Environmental Planning and Management, 56(10), 1487–1510. doi: 10.1080/09640568.2012.731385
  • Turskis, Z., Zavadskas, E. K., & Peldschus, F. (2009). Multi-criteria Optimization system for decision making in construction design and management. Main, 1(61), 7–17. doi: 10.5755/J01.EE.61.1.11571
  • Wang, Y., Huang, Z., & Heng, L. (2007). Cost-effectiveness assessment of insulated exterior walls of residential buildings in cold climate. International Journal of Project Management, 25(2), 143–149. doi: 10.1016/j.ijproman.2006.09.007
  • Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303–329.
  • Zabalza Bribián, I., Aranda Usón, A., & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520. doi: 10.1016/j.buildenv.2009.05.001
  • Zaim, S., Sevkli, M., Camgöz-Akdağ, H., Demirel, O. F., Yayla, A. Y., & Delen, D. (2014). Use of ANP weighted crisp and fuzzy QFD for product development. Expert Systems with Applications, 41(9), 4464–4474.
  • Zhang, Y., Zhou, G., Lin, K., Zhang, Q., & Di, H. (2007). Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment, 42(6), 2197–2209. doi: 10.1016/j.buildenv.2006.07.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.