291
Views
2
CrossRef citations to date
0
Altmetric
Articles

Energy analysis in ice hockey arenas and analytical formula for the temperature profile in the ice pad with transient boundary conditions

ORCID Icon, &
Pages 499-522 | Received 07 Mar 2019, Accepted 02 May 2019, Published online: 14 May 2019

References

  • European Parliament (2010). Directive 2010/31/EU of the European parliament and of the council of 19 may 2010 on the energy performance of buildings. Official Journal of the European Union, 53(2010), 13–35.
  • Amirifard, F., Sharif, S. A., & Nasiri, F. (2018). Application of passive measures for energy conservation in buildings – a review. Advances in Building Energy Research, 26, 1–34.
  • Bellache, O., Galanis, N., & Ouzzane, M. (2006). Two-dimensional transient model of airflow and heat transfer in ice rinks. ASHRAE Transactions, 112(2), 706–716.
  • Bellache, O., Ouzzane, M., & Galanis, N. (2005). Numerical prediction of ventilation patterns and thermal processes in ice rinks. Building and Environment, 40(3), 417–426. doi: 10.1016/j.buildenv.2004.08.004
  • Butera, F. M. (2013). Zero-energy buildings: The challenges. Advances in Building Energy Research, 7(1), 51–65. doi: 10.1080/17512549.2012.756430
  • Caliskan, H., & Hepbasli, A. (2010). Energy and exergy analyses of ice rink buildings at varying reference temperatures. Energy and Buildings, 42(9), 1418–1425. doi: 10.1016/j.enbuild.2010.03.011
  • Castellani, B., Gambelli, A., Morini, E., Nastasi, B., Presciutti, A., Filipponi, M., Nicolini, A., & Rossi, F. (2017). Experimental investigation on CO2 methanation process for solar energy storage compared to CO2-based methanol synthesis. Energies, 10(7), 855. doi: 10.3390/en10070855
  • Castellani, B., Gambelli, A., Nicolini, A., & Rossi, F. (2019). Energy and environmental analysis of membrane-based CH4-CO2 replacement processes in natural gas hydrates. Energies, 12(5), 850. doi: 10.3390/en12050850
  • Chen, H., Zhang, X., Liu, J., & Tan, C. (2013). Compressed air energy storage. In Energy storage-technologies and applications. IntechOpen.
  • Daoud, A., Galanis, N., & Bellache, O. (2008). Calculation of refrigeration loads by convection, radiation and condensation in ice rinks using a transient 3D zonal model. Applied Thermal Engineering, 28(14–15), 1782–1790. doi: 10.1016/j.applthermaleng.2007.11.011
  • Erol, G. O., Açıkkalp, E., & Hepbasli, A. (2017). Performance assessment of an ice rink refrigeration system through advanced exergoeconomic analysis method. Energy and Buildings, 138, 118–126. doi: 10.1016/j.enbuild.2016.12.025
  • Ferrantelli, A., Mélois, P., Räikkönen, M., & Viljanen, M. (2013). Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices. In Sustainable building conference sb13 Munich, implementing sustainability – barriers and chances. Fraunhofer IRB Verlag. e-arxiv: http://arxiv.org/abs/1211.3685.
  • Granryd, E. (2005). Refrigerating engineering, part II. KTH, Department of Energy Technology.
  • Haghighi, E. B., Makhnatch, P., & Rogstam, J. (2014). Energy saving potential with improved concrete in ice rink floor designs. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8(6), 635–641.
  • Hahn, D. W., & Ozisik, M. N. (2012). Heat conduction (3rd ed.). New York: John Wiley.
  • Hastaoglu, M. A., Negiz, A., & Heidemann, R. A. (1995). Three-dimensional transient heat transfer from a buried pipe Part III. Comprehensive model. Chemical Engineering Science, 50(16), 2545–2555. doi: 10.1016/0009-2509(95)00111-H
  • Karampour, M. (2011). Measurement and modeling of ice rink heat loads (Master's thesis). Stockholm: Royal Institute of Technology.
  • Krarti, M. (1999). Building foundation heat transfer. Bioprocess Technology, 13, 241–316.
  • Lü, X., Lu, T., Kibert, C. J., & Viljanen, M. (2014). A novel dynamic modeling approach for predicting building energy performance. Applied Energy, 114, 91–103. doi: 10.1016/j.apenergy.2013.08.093
  • Lü, X., Lu, T., Kibert, C. J., & Viljanen, M. (2015). Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach. Applied Energy, 144, 261–275. doi: 10.1016/j.apenergy.2014.12.019
  • Lu, T., Lü, X., Remes, M., & Viljanen, M. (2011). Investigation of air management and energy performance in a data center in Finland: Case study. Energy and Buildings, 43(12), 3360–3372. doi: 10.1016/j.enbuild.2011.08.034
  • Mun, J., & Krarti, M. (2011). An ice rink floor thermal model suitable for whole-building energy simulation analysis. Building and Environment, 46(5), 1087–1093. doi: 10.1016/j.buildenv.2010.11.008
  • Negiz, A., Hastaoglu, M. A., & Heidemann, R. A. (1993). Three-dimensional transient heat transfer from a buried pipe I. Laminar flow. Chemical Engineering Science, 48(20), 3507–3517. doi: 10.1016/0009-2509(93)85006-B
  • Ohba, M., & Lun, I. (2010). Overview of natural cross-ventilation studies and the latest simulation design tools used in building ventilation-related research. Advances in Building Energy Research, 4(1), 127–166. doi: 10.3763/aber.2009.0405
  • Omri, M., Barrau, J., Moreau, S., & Galanis, N. (2016). Three-dimensional transient heat transfer and airflow in an indoor ice rink with radiant heat sources. Building Simulation, 9(2), 175–182. doi: 10.1007/s12273-015-0255-2
  • Osram GmbH (2014). Osram POWERSTAR® HQI® – technical information (Technical report). Osram.
  • Palmowska, A., & Lipska, B. (2018). Research on improving thermal and humidity conditions in a ventilated ice rink arena using a validated cfd model. International Journal of Refrigeration, 86, 373–387. doi: 10.1016/j.ijrefrig.2017.11.016
  • Poirier, L., Lozowski, E. P., & Thompson, R. I. (2011). Ice hardness in winter sports. Cold Regions Science and Technology, 67(3), 129–134. doi: 10.1016/j.coldregions.2011.02.005
  • Räikkönen, M. (2012). Jäähallin energiatehokkuus (Diploma thesis). Aalto University.
  • ASHRAE. (1994). Refrigeration. Systems and applications (Technical report). American Society of Heating, Refrigeration and Air-Conditioning Engineers.
  • ASHRAE. (2010). Refrigeration. Systems and applications (Technical report). American Society of Heating, Refrigeration and Air-Conditioning Engineers.
  • Seghouani, L., Daoud, A., & Galanis, N. (2009). Prediction of yearly energy requirements of indoor ice rinks. Energy and Buildings, 41(5), 500–511. doi: 10.1016/j.enbuild.2008.11.014
  • Seghouani, L., Daoud, A., & Galanis, N. (2011). Yearly simulation of the interaction between an ice rink and its refrigeration system: A case study. International Journal of Refrigeration, 34(1), 383–389. doi: 10.1016/j.ijrefrig.2010.07.024
  • Somrani, R., Mun, J., & Krarti, M. (2008). Heat transfer beneath ice-rink floors. Building and Environment, 43(10), 1687–1698. doi: 10.1016/j.buildenv.2007.10.016
  • Taebnia, M., Toomla, S., Leppä, L., & Kurnitski, J. (2019). Air distribution and air handling unit configuration effects on energy performance in an air-heated ice rink arena. Energies, 12(4).693. doi: 10.3390/en12040693
  • Teyssedou, G., Zmeureanu, R., & Giguere, D. (2009). Thermal response of the concrete slab of an indoor ice rink (RP-1289) (Technical report). HVAC & R Research. Taylor & Francis.
  • Teyssedou, G., Zmeureanu, R., & Giguere, D. (2013). Benchmarking model for the ongoing commissioning of the refrigeration system of an indoor ice rink. Automation in Construction, 35, 229–237. doi: 10.1016/j.autcon.2013.05.006
  • Titchmarsh, E. (1962a). Eigenfunction expansions part 1. Oxford: Oxford University Press (Clarendon Press).
  • Titchmarsh, E. (1962b). Eigenfunction expansions part 2. Oxford: Oxford University Press (Clarendon Press).
  • Toomla, S., Lestinen, S., Kilpeläinen, S., Leppä, L., Kosonen, R., & Kurnitski, J. (2018). Experimental investigation of air distribution and ventilation efficiency in an ice rink arena. International Journal of Ventilation, 2, 1–17.
  • Tutumlu, H., Yumrutaş, R., & Yildirim, M. (2018). Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank. Energy Exploration & Exploitation, 36(2), 314–334. doi: 10.1177/0144598717723644
  • Yang, C., Demokritou, P., Chen, Q., & Spengler, J. (2001). Experimental validation of a computational fluid dynamics model for IAQ applications in ice rink arenas. Indoor Air, 11(2), 120–126. doi: 10.1034/j.1600-0668.2001.110206.x
  • Yang, C., Demokritou, P., Chen, Q., Spengler, J., & Parsons, A. (2000). Ventilation and air quality in indoor ice skating arenas. ASHRAE Transactions, 106(2), 338–346.
  • Zhao, P., Gao, L., Wang, J., & Dai, Y. (2016). Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines. Renewable Energy, 85(C), 1164–1177. doi: 10.1016/j.renene.2015.07.095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.