111
Views
2
CrossRef citations to date
0
Altmetric
Articles

An insight into the thermal behaviour of a building based on a metamodel for cooling energy consumption

&
Pages 523-547 | Received 01 Feb 2019, Accepted 22 May 2019, Published online: 06 Jun 2019

References

  • Aranda, A., Ferreira, G., Mainar-Toledo, M. D., Scarpellini, S., & Llera Sastresa, E. (2012). Multiple regression models to predict the annual energy consumption in the Spanish banking sector. Energy and Buildings, 49, 380–387. doi: 10.1016/j.enbuild.2012.02.040
  • Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2017). Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach. Energy, 118, 999–1017. doi: 10.1016/j.energy.2016.10.126
  • Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. doi: 10.1080/00401706.1960.10489912
  • Braun, M. R., Altan, H., & Beck, S. B. M. (2014). Using regression analysis to predict the future energy consumption of a supermarket in the UK. Applied Energy, 130, 305–313. doi: 10.1016/j.apenergy.2014.05.062
  • Chatterjee, S., & Hadi, A. S. (2006). Regression analysis by example. Hoboken, NJ: Wiley.
  • Chen, X., Yang, H., & Sun, K. (2017). Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings. Applied Energy, 194, 422–439. doi: 10.1016/j.apenergy.2016.08.180
  • CSTB. (2012). Réglementation Thermique 2012 [Thermal regulation 2012]. (In French).
  • Deb, C., Eang, L. S., Yang, J., & Santamouris, M. (2016). Forecasting diurnal cooling energy load for institutional buildings using artificial neural networks. Energy and Buildings, 121, 284–297. doi: 10.1016/j.enbuild.2015.12.050
  • Dong, B., Cao, C., & Lee, S. E. (2005). Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings, 37(5), 545–553. doi: 10.1016/j.enbuild.2004.09.009
  • EnergyPlus. (2016). EnergyPlus documentation, Version 8.7. US Department of Energy.
  • Feist, W., Schnieders, J., Dorer, V., & Haas, A. (2005). Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy and Buildings, 37(11), 1186–1203. doi: 10.1016/j.enbuild.2005.06.020
  • Fumo, N., & Rafe Biswas, M. A. (2015). Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews, 47, 332–343. doi: 10.1016/j.rser.2015.03.035
  • Geyer, P., & Schlüter, A. (2014). Automated metamodel generation for design space exploration and decision-making – A novel method supporting performance-oriented building design and retrofitting. Applied Energy, 119, 537–556. doi: 10.1016/j.apenergy.2013.12.064
  • Gratia, E., & De Herde, A. (2002). A simple design tool for the thermal study of an office building. Energy and Buildings, 34(3), 279–289. doi: 10.1016/S0378-7788(01)00096-2
  • Heo, Y., & Zavala, V. M. (2012). Gaussian process modeling for measurement and verification of building energy savings. Energy and Buildings, 53, 7–18. doi: 10.1016/j.enbuild.2012.06.024
  • Huedo, P., López-Mesa, B., & Mulet, E. (2018). Analysis of the influence of different variables on the impacts related with the envelope of buildings for residential use, with estimation of the interaction of the user. Advances in Building Energy Research, 12(2), 289–313. doi: 10.1080/17512549.2017.1325400
  • Jaffal, I., & Inard, C. (2017). A metamodel for building energy performance. Energy and Buildings, 151, 501–510. doi: 10.1016/j.enbuild.2017.06.072
  • Jaffal, I., Inard, C., & Ghiaus, C. (2009). Fast method to predict building heating demand based on the design of experiments. Energy and Buildings, 41(6), 669–677. doi: 10.1016/j.enbuild.2009.01.006
  • Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1–13. doi: 10.1007/s00158-001-0160-4
  • Karatasou, S., Santamouris, M., & Geros, V. (2006). Modeling and predicting building’s energy use with artificial neural networks: Methods and results. Energy and Buildings, 38(8), 949–958. doi: 10.1016/j.enbuild.2005.11.005
  • Kleijnen, J. P. C. (1987). Statistical tools for simulation practitioners. New York: Marcel Dekker.
  • Klein, S. A., & al, e. (2004). TRNSYS 16 - A TRaNsient SYstem simulation program, user manual. Madison, WI: Solar Energy Laboratory, University of Wisconsin-Madison.
  • Kumar, R., Aggarwal, R. K., & Sharma, J. D. (2013). Energy analysis of a building using artificial neural network: A review. Energy and Buildings, 65, 352–358. doi: 10.1016/j.enbuild.2013.06.007
  • Lam, J. C., Wan, K. K. W., Lam, T. N. T., & Wong, S. L. (2010). An analysis of future building energy use in subtropical Hong Kong. Energy, 35(3), 1482–1490. doi: 10.1016/j.energy.2009.12.005
  • Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks. Energy Conversion and Management, 50(1), 90–96. doi: 10.1016/j.enconman.2008.08.033
  • Li, Y.-F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Applied Soft Computing, 10(4), 1257–1273. doi: 10.1016/j.asoc.2009.11.034
  • Mastrucci, A., Baume, O., Stazi, F., & Leopold, U. (2014). Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings, 75, 358–367. doi: 10.1016/j.enbuild.2014.02.032
  • Melo, A. P., Versage, R. S., Sawaya, G., & Lamberts, R. (2016). A novel surrogate model to support building energy labelling system: A new approach to assess cooling energy demand in commercial buildings. Energy and Buildings, 131, 233–247. doi: 10.1016/j.enbuild.2016.09.033
  • Montgomery, D. C. (2017). Design and analysis of experiments. Hoboken, NJ: John Wiley & Sons.
  • Nam, Y. J., Gao, X. Y., Yoon, S. H., & Lee, K. H. (2015). Study on the performance of a ground source heat pump system assisted by solar thermal storage. Energies, 8(12), 13378–13394. doi: 10.3390/en81212365
  • Neto, A. H., & Fiorelli, F. v. A. S. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40(12), 2169–2176. doi: 10.1016/j.enbuild.2008.06.013
  • Neufert, E., Neufert, P., & Kister, J. (2012). Architects’ data. Chichester: John Wiley & Sons.
  • Park, N., Jung, S.-H., Park, H.-W., Choi, H.-J., Chin, S., & Jung, H. (2010). Payback period estimation of ground-source and air-source multi heat pumps in Korea based on yearly running cost simulation. International Refrigeration and Air Conditioning Conference at Purdue, July 12–15.
  • Pino-Mejías, R., Pérez-Fargallo, A., Rubio-Bellido, C., & Pulido-Arcas, J. (2017). Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions. Energy, 118, 24–36. doi: 10.1016/j.energy.2016.12.022
  • Ritter, F., Geyer, P., & Borrmann, A. 2015. Simulation-based decision-making in early design stages. 32nd CIB W78 Conference, Eindhoven, The Netherlands, 27–29.
  • Santamouris, M. (2013). Environmental design of urban buildings: An integrated approach. London: Taylor & Francis.
  • Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: Survey and recommendations. Engineering with Computers, 17(2), 129–150. doi: 10.1007/PL00007198
  • Tian, W., Choudhary, R., Augenbroe, G., & Lee, S. H. (2015). Importance analysis and meta-model construction with correlated variables in evaluation of thermal performance of campus buildings. Building and Environment, 92, 61–74. doi: 10.1016/j.buildenv.2015.04.021
  • Tso, G. K. F., & Yau, K. K. W. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9), 1761–1768. doi: 10.1016/j.energy.2006.11.010
  • Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 129(4), 370–380. doi: 10.1115/1.2429697

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.