103
Views
0
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of buoyancy-driven natural ventilation in a building with an atrium using particle image velocimetry (PIV) method

, , , &
Pages 536-553 | Received 04 Mar 2023, Accepted 21 Sep 2023, Published online: 30 Sep 2023

References

  • Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience, and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. https://doi.org/10.1016/j.rser.2020.110669
  • Ai, Z. T., & Mak, C. M. (2014). Determination of single-sided ventilation rates in multistory buildings: Evaluation of methods. Energy and Buildings, 69, 292–300. https://doi.org/10.1016/j.enbuild.2013.11.014
  • Albuquerque, D. P., Sandberg, M., Linden, P. F., & Carrilho da Graça, G. (2020). Experimental and numerical investigation of pumping ventilation on the leeward side of a cubic building. Building and Environment, 179, 106897. https://doi.org/10.1016/j.buildenv.2020.106897
  • Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment, 143, 71–88. https://doi.org/10.1016/j.buildenv.2018.06.056
  • ANSI/ASHRAE. (2013). ANSI/ASHRAE standard: Ventilation and acceptable indoor Air quality in Low-rise residential buildings, vol. 62.2. The Society.
  • Barlow, J. B., Rae, W. H., & Pope, A. (1999). Low-speed wind tunnel testing (3rd ed.). Wiley, 728.
  • Bednarz, T. P., Lei, C., & Patterson, J. C. (2009). An experimental study of unsteady natural convection in a reservoir model subject to periodic thermal forcing using combined PIV and PIT techniques. Experiments in Fluids, 47(1), 107–117. https://doi.org/10.1007/s00348-009-0641-6
  • Chenvidyakarn, T. (2013). Buoyancyy effects on natural ventilation. Cambridge University Press.
  • Chew, L. (2023). Buoyancy-driven natural ventilation: The role of thermal stratification and its impact on model accuracy. E3S Web of Conferences, 396, 02038. https://doi.org/10.1051/e3sconf/202339602038
  • Chu, C. R., Chiu, Y. H., Tsai, Y. T., & Wu, S. L. (2015). Wind-driven natural ventilation for buildings with two openings on the same external wall. Energy and Buildings, 108, 365–372. https://doi.org/10.1016/j.enbuild.2015.09.041
  • Corbett, T., Spentzou, E., & Eftekhari, M. (2022). Sensitivity analysis of proposed natural ventilation IEQ designs for archetypal open-plan office layouts in a temperate climate. Advances in Building Energy Research, 16(2), 171–201. https://doi.org/10.1080/17512549.2020.1813197
  • Daish, N. C., Carrilho da Graça, G., Linden, P. F., & Banks, D. (2016). Impact of aperture separation on wind-driven single-sided natural ventilation. Building and Environment, 108, 122–134. https://doi.org/10.1016/j.buildenv.2016.08.015
  • Etheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51–60. https://doi.org/10.1016/j.buildenv.2015.02.033
  • Fortin, R., Osborne, P., Craig, S., Moe, K., & Jemtrud, M. (2020). Water bath demonstrations of two buoyancy ventilation modes: Displacement vs. mixing. i: Scholars Portal Dataverse, November 3. https://doi.org/10.5683/SP2/G5ALEH
  • Gong, J., & Hang, J. (2019). Buoyancy-driven natural ventilation in one storey connected with an atrium. International Journal of Ventilation, 18(4), 281–302. https://doi.org/10.1080/14733315.2018.1524195
  • Gourlis, G., & Kovacic, I. (2017). Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads. Energy, 137, 1175–1185. https://doi.org/10.1016/j.energy.2017.05.134
  • Hunt, G., & Linden, P. (1999). The fluid mechanics of natural ventilation—displacement ventilation by buoyancy-driven flows assisted by wind. Building and Environment, 34(6), 707–720. https://doi.org/10.1016/S0360-1323(98)00053-5
  • Larsen, T. S., Plesner, C., Leprince, V., Rémi Carrié, F., & Kirkegaard Bejdere, A. (2018). Calculation methods for single-sided natural ventilation: Now and ahead. Energy and Buildings, 177, 279–289. https://doi.org/10.1016/j.enbuild.2018.06.047
  • Liu, Z., Yu, Z., Chen, X., Cao, R., & Zhu, F. (2020). An investigation on external airflow around low-rise building with various roof types: PIV measurements and LES simulations. Building and Environment, 169, 106583. https://doi.org/10.1016/j.buildenv.2019.106583
  • Ma, X. Y., Peng, Y., Zhao, F. Y., Liu, C. W., & Mei, S. J. (2017). Full numerical investigations on the wind driven natural ventilation: Cross ventilation and single-sided ventilation. Procedia Engineering, 205, 3797–3803. https://doi.org/10.1016/j.proeng.2017.10.128
  • Mei, S. J., & Yuan, C. (2022). Urban buoyancy-driven air flow and modelling method: A critical review. Building and Environment, 210, 108708. https://doi.org/10.1016/j.buildenv.2021.108708
  • Moosavi, l., Mayuddin, N., Ab ghafar, N., & Azzam Ismail, M. (2014). Thermal performance of atria: An overview of natural ventilation effective designs. Renewable and Sustainable Energy Reviews, 34, 654–670. https://doi.org/10.1016/j.rser.2014.02.035
  • Morton, B. R., Taylor, G. I., & Stewart, J. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 234(1196), 1–23.
  • Nasrollahi, N., & Ghobadi, P. (2022). Field measurement and numerical investigation of natural cross-ventilation in high-rise buildings; Thermal comfort analysis. Applied Thermal Engineering, 211, 118500. https://doi.org/10.1016/j.applthermaleng.2022.118500
  • Pratap, R., Rayudu, R., & Plagmann, M. (2015). Modelling of airflow analysis for residential homes using particle image velocimetry. In R. Denzer, R. M. Argent, G. Schimak, & J. Hřebíček (Eds.), Environmental software systems. Infrastructures, services, and applications. ISESS 2015. IFIP advances in information and communication technology (pp. 293–302). Springer.
  • Pu, J., Yuan, Y., Jiang, F., Zheng, K., & Zhao, K. (2022). Buoyancy-driven natural ventilation characteristics of thermal corridors in industrial buildings. Journal of Building Engineering, 50, 104107. https://doi.org/10.1016/j.jobe.2022.104107
  • Raffel, M., Willert, C. E., Scarano, F., Kahler, C. J., Werely, S. E., & Komenhans, J. (2018). Particle image velocimetry, A practical guide. Springer.
  • Ramponi, R., Angelotti, A., & Blocken, B. (2014). Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates. Applied Energy, 123, 185–195. https://doi.org/10.1016/j.apenergy.2014.02.041
  • Sciacchitano, A. (2019). Uncertainty quantification in particle image velocimetry. Measurement Science and Technology, 30(9), 092001. https://doi.org/10.1088/1361-6501/ab1db8
  • Thielicke, W., & Stamhuis, E. J. (2014). PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2. https://doi.org/10.5334/jors.bl
  • Todd, S. P. (2016). Water bath modeling of transient and time-dependent natural ventilation flows [Doctoral thesis]. Loughborough University.
  • Yang, L., Ye, M., & He, B. (2014a). CFD simulation research on residential indoor air quality. Science of the Total Environment, 472, 1137–1144. https://doi.org/10.1016/j.scitotenv.2013.11.118
  • Yang, X., Zhong, K., Zhu, H., & Kang, Y. (2014b). Experimental investigation on transient natural ventilation driven by thermal buoyancy. Building and Environment, 77, 29–39. https://doi.org/10.1016/j.buildenv.2014.03.013
  • Zhang, H., Yang, D., Tam, V. W., Tao, Y., Zhang, G., Setunge, S., & Shi, L. (2021). A critical review of combined natural ventilation techniques in sustainable buildings. Renewable and Sustainable Energy Reviews, 141, 110795. https://doi.org/10.1016/j.rser.2021.110795
  • Zhang, J., Yan, Z., Zhang, Z., Bi, W., & Yao, S. (2023). A New correlation for single-sided natural ventilation rate based on full-scale experimental study in mogao grottoes, dunhuang, China. Buildings, 13(5), 1298. https://doi.org/10.3390/buildings13051298
  • Zhao, Y., Li, H., Kubilay, A., & Carmeliet, J. (2021). Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: Wind tunnel PIV measurements. Science of the Total Environment, 797, 149067. https://doi.org/10.1016/j.scitotenv.2021.149067
  • Zhong, H. Y., Sun, Y., Shang, J., Qian, F. P., Zhao, F. Y., Kikumoto, H., Jimenez-Bescos, C., & Liu, X. (2022). Single-sided natural ventilation in buildings: A critical literature review. Building and Environment, 212, 108797. https://doi.org/10.1016/j.buildenv.2022.108797
  • Zhong, W., Xiao, W., & Zhang, T. (2023). Numerical investigations on natural ventilation in atria of China's southern Yangtze vernacular dwellings. Sustainable Cities and Society, 89, 104341. https://doi.org/10.1016/j.scs.2022.104341

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.