628
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of indoor thermal comfort and air quality for an office equipped with corner impinging jet ventilation

, &
Pages 578-604 | Received 10 Apr 2023, Accepted 05 Oct 2023, Published online: 17 Oct 2023

References

  • Abbas, S. M. (2018). Experimental and theoretical investigation of impinging jet ventilation at different cross sectional area of supply air duct. Journal of University of Babylon for Engineering Sciences, 26(5), 238–257. https://www.journalofbabylon.com/index.php/JUBES/article/view/1033
  • Ahmed, K., Carlier, M., Feldmann, C., & Kurnitski, J. (2018). A new method for contrasting energy performance and near-zero energy building requirements in different climates and countries. Energies, 11(6), 1334. https://doi.org/10.3390/en11061334
  • Ameen, A., Bahrami, A., & El Tayara, K. (2022a). Energy performance evaluation of historical building. Buildings, 12(10), 1667. https://doi.org/10.3390/buildings12101667
  • Ameen, A., Cehlin, M., Larsson, U., & Karimipanah, T. (2019a). Experimental investigation of the ventilation performance of different air distribution systems in an office environment – cooling mode. Energies, 12(7), 1354. https://doi.org/10.3390/en12071354
  • Ameen, A., Cehlin, M., Larsson, U., & Karimipanah, T. (2019b). Experimental investigation of ventilation performance of different air distribution systems in an office environment-heating mode. Energies, 12(10), 1835. https://doi.org/10.3390/en12101835
  • Ameen, A., Cehlin, M., Larsson, U., Yamasawa, H., & Kobayashi, T. (2022b). Numerical investigation of the flow behavior of an isothermal corner impinging jet for building ventilation. Building and Environment, 223, 109486. https://doi.org/10.1016/j.buildenv.2022.109486
  • Ameen, A., Yamasawa, H., & Kobayashi, T. (2022c). Numerical evaluation of the flow field of an isothermal dual-corner impinging jet for building ventilation. Buildings, 12(10), 1767. https://doi.org/10.3390/buildings12101767
  • American Society of Heating and Refrigerating and Air-Conditioning Engineers. (2017). Thermal environmental conditions for human occupancy: ANSI/ASHRAE standard 55-2017. ASHRAE Peachtree Corners, GA, USA.
  • American Society of Heating and Refrigerating and Air-Conditioning Engineers. (2021). Thermal environmental conditions for human occupancy: ANSI/ASHRAE standard 55-2020. ASHRAE Peachtree Corners, GA, USA.
  • ANSYS. (2020). ANSYS fluent theory guide 2020 R2. In ANSYS Inc. ANSYS, Inc. Canonsburgh, PA, USA.
  • ASHRAE, A. S. (1997). Standard 129-1997. Measuring air-change effectiveness, AHSRAE, Atlanta, GA.
  • Awbi, H. B. (2002). Ventilation of buildings. Routledge.
  • Buratti, C., Mariani, R., & Moretti, E. (2011). Mean age of air in a naturally ventilated office: Experimental data and simulations. Energy and Buildings, 43(8), 2021–2027. https://doi.org/10.1016/j.enbuild.2011.04.015
  • Cao, G., Awbi, H., Yao, R., Fan, Y., Sirén, K., Kosonen, R., & Zhang, J. J. (2014). A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 73, 171–186. https://doi.org/10.1016/j.buildenv.2013.12.009
  • Cehlin, M., Karimipanah, T., Larsson, U., & Ameen, A. (2019). Comparing thermal comfort and air quality performance of two active chilled beam systems in an open-plan office. Journal of Building Engineering, 22. https://doi.org/10.1016/j.jobe.2018.11.013
  • Cehlin, M., & Moshfegh, B. (2010). Numerical modeling of a complex diffuser in a room with displacement ventilation. Building and Environment, 45(10), 2240–2252. https://doi.org/10.1016/j.buildenv.2010.04.008
  • Chen, H., Janbakhsh, S., Larsson, U., & Moshfegh, B. (2015). Numerical investigation of ventilation performance of different air supply devices in an office environment. Building and Environment, 90, 37–50. https://doi.org/10.1016/j.buildenv.2015.03.021
  • Chen, H., & Moshfegh, B. (2011). Comparing k-ϵ models on predictions of an impinging jet for ventilation of an office room. The 12th International Conference on Air Distribution in Rooms, Trondheim, Norway June 19-22, 2011. https://www.diva-portal.org/smash/get/diva2:450171/FULLTEXT01.pdf
  • Chen, H., Moshfegh, B., & Cehlin, M. (2013b). Computational investigation on the factors influencing thermal comfort for impinging jet ventilation. Building and Environment, 66, 29–41. https://doi.org/10.1016/j.buildenv.2013.04.018
  • Chen, H. J., Moshfegh, B., & Cehlin, M. (2012). Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Building and Environment, 49, 154–166. https://doi.org/10.1016/j.buildenv.2011.09.027
  • Chen, H. J., Moshfegh, B., & Cehlin, M. (2013a). Investigation on the flow and thermal behavior of impinging jet ventilation systems in an office with different heat loads. Building and Environment, 59, 127–144. https://doi.org/10.1016/j.buildenv.2012.08.014
  • Fan, Y., Li, X., Yan, Y., & Tu, J. (2017). Overall performance evaluation of underfloor air distribution system with different heights of return vents. Energy and Buildings, 147. https://doi.org/10.1016/j.enbuild.2017.04.070
  • Faulkner, D., Fisk, W. J., & Sullivan, D. P. (1995). Indoor airflow and pollutant removal in a room with floor-based task ventilation: Results of additional experiments. Building and Environment, 30(3), 323–332. https://doi.org/10.1016/0360-1323(94)00051-S
  • Howell, J. R., Mengüc, M. P., Daun, K., & Siegel, R. (2020). Thermal radiation heat transfer (7th ed.). CRC Press. https://doi.org/10.1201/9780429327308
  • Hu, J., Kang, Y., Lu, Y., Yu, J., & Zhong, K. (2021a). Simplified models for predicting thermal stratification in impinging jet ventilation rooms using multiple regression analysis. Building and Environment, 206, 108311. https://doi.org/10.1016/j.buildenv.2021.108311
  • Hu, J., Kang, Y., Yu, J., & Zhong, K. (2021b). Numerical study on thermal stratification for impinging jet ventilation system in office buildings. Building and Environment, 196, 107798. https://doi.org/10.1016/j.buildenv.2021.107798
  • International Organization for Standardization. (2005). ISO 7730:2005 ergonomics of the thermal environment: Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO.
  • Karimipanah, T., & Awbi, H. B. (2002). Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Building and Environment, 37(12), 1329–1342. https://doi.org/10.1016/S0360-1323(01)00117-2
  • Kong, X., Xi, C., Li, H., & Lin, Z. (2019). A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Building and Environment, 157, 34–46. https://doi.org/10.1016/j.buildenv.2019.04.045
  • Koufi, L., Younsi, Z., Cherif, Y., & Naji, H. (2017). Numerical investigation and analysis of indoor air quality in a room based on impinging jet ventilation. Energy Procedia, 139, 710–717. https://doi.org/10.1016/j.egypro.2017.11.276
  • Kristjansdottir, T. F., Heeren, N., Andresen, I., & Brattebø, H. (2018). Comparative emission analysis of low-energy and zero-emission buildings. Building Research & Information, 46(4), 367–382. https://doi.org/10.1080/09613218.2017.1305690
  • Lee, H., & Awbi, H. B. (2004). Effect of internal partitioning on indoor air quality of rooms with mixing ventilation—basic study. Building and Environment, 39(2), 127–141. https://doi.org/10.1016/j.buildenv.2003.08.007
  • Li, X., Li, D., Yang, X., & Yang, J. (2003). Total air age: An extension of the air age concept. Building and Environment, 38(11). https://doi.org/10.1016/S0360-1323(03)00133-1
  • Liu, S., Koupriyanov, M., Paskaruk, D., Fediuk, G., & Chen, Q. (2022). Investigation of airborne particle exposure in an office with mixing and displacement ventilation. Sustainable Cities and Society, 79, 103718. https://doi.org/10.1016/j.scs.2022.103718
  • Pieskä, H., Ploskić, A., & Wang, Q. (2020). Design requirements for condensation-free operation of high-temperature cooling systems in Mediterranean climate. Building and Environment, 185, 107273. https://doi.org/10.1016/j.buildenv.2020.107273
  • Sahlin, P., Eriksson, L., Grozman, P., Johnsson, H., Shapovalov, A., & Vuolle, M. (2004). Whole-building simulation with symbolic DAE equations and general purpose solvers. Building and Environment, 39(8), 949–958. https://doi.org/10.1016/j.buildenv.2004.01.019
  • Soleimani-Mohseni, M., Nair, G., & Hasselrot, R. (2016). Energy simulation for a high-rise building using IDA ICE: Investigations in different climates. Building Simulation, 9(6), 629–640. https://doi.org/10.1007/s12273-016-0300-9
  • Staveckis, A., & Borodinecs, A. (2021). Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings. Energy and Buildings, 235, 110738. https://doi.org/10.1016/j.enbuild.2021.110738
  • Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE thermal comfort tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563. https://doi.org/10.1016/j.softx.2020.100563
  • Vimalanathan, K., & Babu, T. R. (2014). The effect of indoor office environment on the work performance, health and well-being of office workers. Journal of Environmental Health Science and Engineering, 12(1), 1–8. https://doi.org/10.1186/s40201-014-0113-7
  • Wang, L., Dai, X., Wei, J., Ai, Z., Fan, Y., Tang, L., Jin, T., & Ge, J. (2021). Numerical comparison of the efficiency of mixing ventilation and impinging jet ventilation for exhaled particle removal in a model intensive care unit. Building and Environment, 200, 107955. https://doi.org/10.1016/j.buildenv.2021.107955
  • Woloszyn, M., & Rode, C. (2008). Tools for performance simulation of heat, air and moisture conditions of whole buildings. Building Simulation, 1(1), 5–24. https://doi.org/10.1007/s12273-008-8106-z
  • Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
  • Yamasawa, H., Kobayashi, T., Yamanaka, T., Choi, N., Cehlin, M., & Ameen, A. (2021a). Applicability of displacement ventilation and impinging jet ventilation system to heating operation. Japan Architectural Review, 4(2), 403–416. https://doi.org/10.1002/2475-8876.12220
  • Yamasawa, H., Kobayashi, T., Yamanaka, T., Choi, N., Cehlin, M., & Ameen, A. (2021b). Effect of supply velocity and heat generation density on cooling and ventilation effectiveness in room with impinging jet ventilation system. Building and Environment, 108299. https://doi.org/10.1016/j.buildenv.2021.108299
  • Yamasawa, H., Kobayashi, T., Yamanaka, T., Choi, N., Cehlin, M., & Ameen, A. (2022). Prediction of thermal and contaminant environment in a room with impinging jet ventilation system by zonal model. Building and Environment, 221, 109298. https://doi.org/10.1016/j.buildenv.2022.109298
  • Yang, B., Melikov, A. K., Kabanshi, A., Zhang, C., Bauman, F. S., Cao, G., Awbi, H., Wigö, H., Niu, J., & Cheong, K. W. D. (2019). A review of advanced air distribution methods-theory, practice, limitations and solutions. Energy and Buildings, 202, 109359. https://doi.org/10.1016/j.enbuild.2019.109359
  • Yang, X., Ye, X., Zuo, B., Zhong, K., & Kang, Y. (2021). Analysis of the factors influencing the airflow behavior in an impinging jet ventilation room. Building Simulation, 14(3), 749–762. https://doi.org/10.1007/s12273-020-0690-6
  • Ye, X., Kang, Y., Yan, Z., Chen, B., & Zhong, K. (2020). Optimization study of return vent height for an impinging jet ventilation system with exhaust/return-split configuration by TOPSIS method. Building and Environment, 177, 106858. https://doi.org/10.1016/j.buildenv.2020.106858
  • Ye, X., Kang, Y., Yang, F., & Zhong, K. (2019). Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode. Building and Environment, 160, 106159. https://doi.org/10.1016/j.buildenv.2019.106159
  • Ye, X., Qi, H., Kang, Y., & Zhong, K. (2022). Optimization study of heating performance for an impinging jet ventilation system based on data-driven model coupled with TOPSIS method. Building and Environment, 223, 109465. https://doi.org/10.1016/j.buildenv.2022.109465
  • Ye, X., Zhu, H., Kang, Y., & Zhong, K. (2016). Heating energy consumption of impinging jet ventilation and mixing ventilation in large-height spaces: A comparison study. Energy and Buildings, 130, 697–708. https://doi.org/10.1016/j.enbuild.2016.08.055