1,989
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Bifurcations and dynamics of a discrete predator–prey system

Pages 161-186 | Received 16 Nov 2013, Accepted 18 May 2014, Published online: 17 Jun 2014

References

  • S. Agarwal and M. Fan, Periodic solutions of non-autonomous discrete predator–prey system of Lotka–Volterra type, Appl. Anal. 81 (2002), pp. 801–812. doi: 10.1080/0003681021000004438
  • H.N. Agiza, E. Elabbasy, A.A. Elasdany, and M.H. Metwally, Chaotic dynamics of a discrete prey–predator model with Holling type II, Nonlinear Anal. Real World Appl. 10 (2009), pp. 116–119. doi: 10.1016/j.nonrwa.2007.08.029
  • R.M. Anderson, M.P. Hassell, R.M. May, and D.W. Tonkyn, Density dependence in host–parasitoid models, J. Anim. Ecol. 50 (1981), pp. 855–865. doi: 10.2307/4080
  • D. Armbruster, Y. Kang, and Y. Kuang, Dynamics of a plant–herbivore model, J. Biol. Dyn. 2 (2008), pp. 89–101. doi: 10.1080/17513750801956313
  • V.A. Bailey and A.J. Nicholson, The balance of animal populations, I Proc. Zool. Soc. Lond. 3 (1935), pp. 551–598.
  • J.R. Beddington, C.A. Free, and J.H. Lawton, Dynamic complexity in predator–prey models framed in difference equations, Nature 225 (1975), pp. 58–60. doi: 10.1038/255058a0
  • H. Brian, C. Justian, and D. Summers, Chaos in periodically forced discrete-time ecosystem models, Chaos Solitons Fractals 11 (2000), pp. 2331–2342. doi: 10.1016/S0960-0779(99)00154-X
  • B.D. Corbett, and S.M. Moghadas, Limit cycles in a generalized Gause-type predator–prey model, Chaos Solitons Fractals 37 (2008), pp. 1343–1355. doi: 10.1016/j.chaos.2006.10.017
  • L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, Philadelphia, PA, 2005.
  • S. Elaydi, S. Kapçak, and U. Ufuktepe, Stability and invariant manifolds of a generalized Beddington host–parasitoid model, J. Biol. Dyn. 7(1) (2013), pp. 233–253. doi: 10.1080/17513758.2013.849764
  • M. Fan and K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator–prey system, Math. Comput. Model. 35 (2002), pp. 951–961. doi: 10.1016/S0895-7177(02)00062-6
  • A.N. Hone, M.V. Irle, and G.W. Thurura, On the Neimark–Sacker bifurcation in a discrete predator–prey system, J. Biol. Dyn. 4(6) (2010), pp. 594–606. doi: 10.1080/17513750903528192
  • H.F. Huo and W.T. Li, Existence and global stability of periodic solutions of a discrete predator–prey system with delays, Appl. Math. Comput. 153 (2004), pp. 337–351. doi: 10.1016/S0096-3003(03)00635-0
  • G. Jiang and Q. Lu, Impulsive state feedback of a predator–prey model, J. Comput. Appl. Math. 200 (2007), pp. 193–207. doi: 10.1016/j.cam.2005.12.013
  • G. Jiang, Q. Lu, and L. Qian, Complex dynamics of a Holling type II prey–predator system with state feedback control, Chaos Solitons Fractals 31 (2007), pp. 448–461. doi: 10.1016/j.chaos.2005.09.077
  • Z. Jing and J. Yang, Bifurcation and chaos in discrete time predatorprey system, Chaos Solitons Fractals 27 (2000), pp. 259–277. doi: 10.1016/j.chaos.2005.03.040
  • B.E. Kendall, Cycles, Chaos and noise in predator–prey dynamics, Chaos Solitons Fractals 12 (2001), pp. 321–332. doi: 10.1016/S0960-0779(00)00180-6
  • Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1998.
  • X. Liu and D. Xiao, Complex dynamic behaviour of a discrete time predator–prey system, Chaos Solitons Fractals 32 (2007), pp. 80–94. doi: 10.1016/j.chaos.2005.10.081
  • Y. Neimark, On some cases of periodic motions depending on parameters, Dokl. Acad. Nauk. SSSR 129 (1959), pp. 736–739.
  • W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954), pp. 559–623. doi: 10.1139/f54-039
  • R.J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Ph.D. thesis, IMM-NYU 333, Courant Institute, New York University, 1964.