1,302
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission

, &
Pages 416-456 | Received 31 Jan 2015, Accepted 22 Jul 2016, Published online: 16 Aug 2016

References

  • S. Alizon and S. Lion, Within-host parasite cooperation and the evolution of virulence, Proc. R. Soc. B 278 (2011), pp. 3738–3747. doi: 10.1098/rspb.2011.0471
  • S. Alizon, F. Luciani, and R.R. Regoes, Epidemiological and clinical consequences of within-host evolution, Trends Microbiol. 19(1) (2011), pp. 24–32. doi: 10.1016/j.tim.2010.09.005
  • C.A.A. Beauchemin and A. Handel, A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead, BMC Public Health 11(Suppl 1) (2011), p. S7. doi: 10.1186/1471-2458-11-S1-S7
  • F. Brauer, Z.S. Shuai, and P.V.D. Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng. 10 (2013), pp. 1335–1349. doi: 10.3934/mbe.2013.10.1335
  • H.J. Bremermann and H.R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol. 2 (1989), pp. 179–190. doi: 10.1007/BF00276102
  • C.J. Browne, A multi-strain virus model with infected cell age structure: application to HIV, Non Anal: RWA 22 (2015), pp. 354–372. doi: 10.1016/j.nonrwa.2014.10.004
  • C.J. Browne and S.S. Pilyugin, Global analysis of age-structured within-host virus model, DCDS-B 18(8) (2013), pp. 1999–2017. doi: 10.3934/dcdsb.2013.18.1999
  • D.F. Cuadros and G. Garcia-Ramos, Variable effect of co-infection on the HIV infectivity: Within-host dynamics and epidemiological significance, Theoret. Biol. Med. Model. 9(9) (2012), doi:10.1186/1742-4682-9-9.
  • P. De Leenheer and S.S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis, Math. Med. Biol. 25 (2008), pp. 285–322. doi: 10.1093/imammb/dqn023
  • P. De Leenheer and H.L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math. 63(4) (2003), pp. 1313–1327. doi: 10.1137/S0036139902406905
  • R.D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, SIAM J. Appl. Math. 73(1) (2013), pp. 572–593. doi: 10.1137/120890351
  • M.A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution: A nested approach based on mechanistic models, J. Theoret. Biol. 218(3) (2002), pp. 289–308. doi: 10.1006/jtbi.2002.3076
  • H. Gulbudak and M. Martcheva, Forward hysteresis and backward bifurcation caused by culling in an avian influenza model, Math. Biosci. 246 (2013), pp. 202–212. doi: 10.1016/j.mbs.2013.09.001
  • J.K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988.
  • J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), pp. 388–395. doi: 10.1137/0520025
  • B. Hellriegel, Immunoepidemiology-bridging the gap between immunology and epidemiology, Trends Parasitology 17(2) (2001), pp. 102–106. doi: 10.1016/S1471-4922(00)01767-0
  • R.D. Holt and M. Barfield, Within-host pathogen dynamics: Some ecological and evolutionary consequences of transients, dispersal mode, and within-host spatial heterogeneity, DIMACS Series Discret. Math. Theoret. Comput. Sci. 71 (2006), pp. 45–66.
  • J.P. LaSalle, Some extensions of Lyapunov's second method, IRE Trans, Circuit Theory CT-7 (1960), pp. 520–527. doi: 10.1109/TCT.1960.1086720
  • P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal. 37 (2005), pp. 251–275. doi: 10.1137/S0036141003439173
  • P. Magal, C.C. McCluskey, and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal. 89(7) (2010), pp. 1109–1140. doi: 10.1080/00036810903208122
  • M. Martcheva and X.-Z . Li, Linking immunological and epidemiological dynamics of HIV: The case of super-infection, J. Biol. Dyn. 7(1) (2013), pp. 161–182. doi: 10.1080/17513758.2013.820358
  • M. Martcheva and X.-Z . Li, Competitive exclusion in an infection-age structured model with environmental transmission, J. Math. Anal. Appl. 408 (2013), pp. 225–246. doi: 10.1016/j.jmaa.2013.05.064
  • G.F. Medley, The epidemiological consequences of optimisation of the individual host immune response, Parasitology 125 (2002), pp. S61–S70. doi: 10.1017/S0031182002002354
  • A.U. Neumann, N.P. Lam, H. Dahari, D.R. Gretch, T.E. Wiley, T.J. Layden, and A.S. Perelson, A model for ovine brucellosis incorporating direct and indirect transmission, Hepatitis C virus dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science 282 (1998), pp. 103–107. doi: 10.1126/science.282.5386.103
  • A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span and viral generation time, Science 271 (1996), pp. 1582–1586. doi: 10.1126/science.271.5255.1582
  • R.R. Recoes, D. Wodarz, and M.A. Nowak, Virus dynamics: The effect of target cell limitation and immune responses on virus evolution, J. Theoret. Biol. 191 (2010), pp. 451–462. doi: 10.1006/jtbi.1997.0617
  • H.L. Smith and H.R. Thieme, Dynamical System and Population Persistence, Grad. Stud. Math. Vol. 118, American Mathematical Society, Providence, RI, 2011. Available at http://epubs.siam.org/doi/ref/10.1137/110850761.
  • H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ. 3(6) (1990), pp. 1035–1066.
  • H.R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math. 53 (1993), pp. 1447–1479. doi: 10.1137/0153068
  • G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • K. Yosida, Functional Analysis, 2nd ed., Springer-Verlag, Berlin, 1968.