1,847
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and analysis of impulsive releases of sterile mosquitoes

, &
Pages 147-171 | Received 23 Feb 2016, Accepted 23 Oct 2016, Published online: 17 Nov 2016

References

  • L. Alphey, M. Benedict, R. Bellini, G.G. Clark, D.A. Dame, M.W. Service, and S.L. Dobson, Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector-Borne Zoonotic Dis. 10 (2010), pp. 295–311. doi: 10.1089/vbz.2009.0014
  • R. Anguelov, Y. Dumont, and J.M.S. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl. 64 (2012), pp. 374–389. doi: 10.1016/j.camwa.2012.02.068
  • D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, Pitman, London, 1993.
  • D.D. Bainov and P.S. Simeonov, System with Impulse Effect Theory and Applications, Ellis Harwood series in Mathematics and its Applications, Ellis Harwood, Chichester, 1993.
  • H.J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol. 24 (1982), pp. 405–416. doi: 10.1007/BF02515585
  • H.J. Barclay and M. Mackuer, The sterile insect release method for pest control: A density-dependent model, Environ. Entomol. 9 (1980), pp. 810–817. doi: 10.1093/ee/9.6.810
  • A.C. Bartlett and R.T. Staten, The sterile insect release method and other genetic control strategies, in Radcliffe's IPM World Textbook, 1996. Available at http://ipmworld.umn.edu/chapters/bartlett.htm.
  • L.M. Cai, S.B. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math. 74 (2014), pp. 1786–1809. doi: 10.1137/13094102X
  • L.S. Chen, Pest control and geometric theory of Semi-continuous dynamical system, J. Beihua Univ. 12 (2011), pp. 1–9.
  • H. Diaz, A.A. Ramirez, A. Olarte, and C. Clavijo, A model for the control of malaria using genetically modified vectors, J. Theoret. Biol. 276 (2011), pp. 57–66. doi: 10.1016/j.jtbi.2011.01.053
  • C. Dufourd and Y. Dumont, Impact of environmental factors on mosquito dispersal in the prospect of Sterile Insect Technique control, Comput. Math. Appl. 66 (2013), pp. 1695–1715. doi: 10.1016/j.camwa.2013.03.024
  • Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol. 65 (2012), pp. 809–854. doi: 10.1007/s00285-011-0477-6
  • V.A. Dyck, J. Hendrichs, and A.S. Robinson, Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Managemen, Springer, Dordrecht, 2005. ISBN: 1-4020-4050-4.
  • L. Esteva and H.M. Yang, Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci. 198 (2005), pp. 132–147. doi: 10.1016/j.mbs.2005.06.004
  • K.R. Fister, M.L. McCarthy, S.F. Oppenheimer, and C. Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci. 244 (2013), pp. 201–212. doi: 10.1016/j.mbs.2013.05.008
  • J.C. Flores, A mathematical model for wild and sterile species in competition: Immigration, Phys. A. 328 (2003), pp. 214–224. doi: 10.1016/S0378-4371(03)00545-4
  • M.Z. Huang, J.X. Li, X.Y. Song, and H.J. Guo, Modeling Impulsive Injections of Insulin: Towards Artificial Pancreas, SIAM J. Appl. Math. 72 (2012), pp. 1524–1548. doi: 10.1137/110860306
  • V. Lakshmikantham, D. Bainov, and P. Simeonov, Theory of Impulsive Differential Equations, Vol. 6, World Scientific, Singapore, 1989.
  • J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci. 189 (2004), pp. 39–59. doi: 10.1016/j.mbs.2004.01.001
  • J. Li, Differential equations models for interacting wild and transgenic mosquito populations, J. Biol. Dyn. 2 (2008), pp. 241–258. doi: 10.1080/17513750701779633
  • J. Li, Modeling of mosquitoes with dominant or recessive transgenes and Allee effects, Math. Biosci. Eng. 7 (2010), pp. 101–123.
  • J. Li, Modelling of transgenic mosquitoes and impact on malaria transmission, J. Biol. Dyn. 5 (2011), pp. 474–494. doi: 10.1080/17513758.2010.523122
  • J. Li, Discrete-time models with mosquitoes carrying genetically-modified bacteria, Math. Biosci. 240 (2012), pp. 35–44. doi: 10.1016/j.mbs.2012.05.012
  • J. Li and Z.L. Yuan, Modelling releases of sterile mosquitoes with different strategies, J. Biol. Dyn. 9 (2015), pp. 1–14. doi: 10.1080/17513758.2014.977971
  • A. Maiti, B. Patra, and G.P. Samanta, Sterile insect release method as a control measure of insect pests: A mathematical model, J. Appl. Math. Comput. 22 (2006), pp. 71–86. doi: 10.1007/BF02832038
  • M. Rafikov, L. Bevilacqua, and A.P.P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes, J. Theoret. Biol. 258 (2009), pp. 418–425. doi: 10.1016/j.jtbi.2008.08.006
  • M. Rafikov, A.P. Wyse, and L. Bevilacqua, Controlling the interaction between wild and transgenic mosquitoes, J. Nonlinear Syst. Appl. 1 (2010), pp. 21–31.
  • S. S. Seirin Lee, R.E. Baker, E.A. Gaffney, and S.M. White, Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques, Theoret. Ecol. 6 (2013), pp. 427–442. doi: 10.1007/s12080-013-0178-4
  • S.F. Shuai, Y.J. Li, and X.G. Chen, Summarize of common monitoring methods of mosquito vectors, J. Trop. Med. 13 (2013), pp. 1292–1296.
  • R.C.A. Thome, H.M. Yang, and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci. 223 (2010), pp. 12–23. doi: 10.1016/j.mbs.2009.08.009
  • S.M. White, P. Rohani, and S.M. Sait, Modelling pulsed releases for sterile insect techniques: Fitness costs of sterile and transgenic males and the effects on mosquito dynamics, J. Appl. Ecol. 47 (2010), pp. 1329–1339. doi: 10.1111/j.1365-2664.2010.01880.x
  • Wikipedia: Sterile Insect Technique (2013). Available at http://en.wikipedia.org/wiki/Sterileinsecttechnique.
  • A.P.P. Wyse, L. Bevilacqua, and M. Rafikov, Simulating malaria model for different treatment intensities in a variable environment, Ecol. Model. 206 (2007), pp. 322–330. doi: 10.1016/j.ecolmodel.2007.03.038
  • http://news.163.com/15/0802/06/B008SANU00014Q4P.html.