3,633
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Deceptive pollination and insects’ learning: a delicate balance

&
Pages 299-322 | Received 16 Jan 2017, Accepted 26 May 2017, Published online: 19 Jun 2017

References

  • D.P. Abrol, Pollination biology, Springer, Dordrecht, 2012. doi: 10.1007/978-94-007-1942-2 .
  • J. Biesmeijer, S. Roberts, and M. Reemer, Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313 (2006), pp. 351–354. doi: 10.1126/science.1127863
  • D. Clarke, H. Whitney, G.P. Sutton, and D. Robert, Detection and learning of floral electric fields by bumblebees, Science. 340 (2013), pp. 66–69. doi: 10.1126/science.1230883.
  • A. Dafni, Mimicry and deception in pollination, Annu. Rev. Ecol. Syst. 15 (1984), pp. 259–278. doi: 10.1146/annurev.es.15.110184.001355
  • R. Dukas and E. Bernays, Learning improves growth rate in grasshoppers, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 2637–2640. doi: 10.1073/pnas.050461497
  • R. Dukas and L.A. Real, Learning constraints and floral choice behaviour in bumble bees, Anim. Behav. 46 (1993), pp. 637–644. doi: 10.1006/anbe.1993.1240.
  • L. Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia, 1988.
  • A. Edwards and A. Yool, The role of higher predation in plankton population models, J. Plankton Res. 22 (2000), pp. 1085–1112. doi: 10.1093/plankt/22.6.1085
  • A. Edwards and J. Brindley, Oscillatory behaviour in a three-component plankton population model, Dyn. Stab. Syst. 11 (1996), pp. 347–370. doi: 10.1080/02681119608806231
  • J. Ferdy, F. Austerlitz, J. Moret, P. Gouyon, and B. Godelle, Pollinator-induced density dependence in deceptive species, Oikos 87 (1999), pp. 549–560. doi: 10.2307/3546819
  • J.B. Ferdy, P.H. Gouyon, J. Moret, and B. Godelle, Pollinator behavior and deceptive pollination: learning process and floral evolution, Am. Nat. 152 (1998), pp. 696–705. doi: 10.1086/286200.
  • A. Gaskett and C. Winnick, Orchid sexual deceit provokes ejaculation, Am. Nat. 171 (2008), pp. E206–E212. doi: 10.1086/587532
  • A. Gumbert, Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning, Behav. Ecol. Sociobiol. 48 (2000), pp. 36–43. doi:10.1007/s002650000213. doi: 10.1007/s002650000213
  • A.I. Internicola, P.A. Page, G. Bernasconi, and L.D.B. Gigord, Competition for pollinator visitation between deceptive and rewarding artificial inflorescences: An experimental test of the effects of floral colour similarity and spatial mingling, Funct. Ecol. 21 (2007), pp. 864–872. doi: 10.1111/j.1365-2435.2007.01303.x.
  • M.L. de Jager and A.G. Ellis, Costs of deception and learned resistance in deceptive interactions, Proc. R. Soc. B. 281 (2014), pp. 20132861. doi: 10.1098/rspb.2013.2861.
  • M. de Jager, E. Newman, G. Theron, P. Botha, M. Barton, and B. Anderson, Pollinators can prefer rewarding models to mimics: Consequences for the assumptions of Batesian floral mimicry, Plant Syst. Evol. 302 (2016), pp. 409–418. doi: 10.1007/s00606-015-1276-0.
  • S. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput. Math. Appl. 49 (2005), pp. 375–387. doi: 10.1016/j.camwa.2004.03.013
  • J. Jersáková, S.D. Johnson, and P. Kindlmann, Mechanisms and evolution of deceptive pollination in orchids, Biol. Rev. 81 (2006), pp. 219–235. doi: 10.1017/S1464793105006986.
  • C.A. Kearns, D.W. Inouye, and N.M. Waser, Endangered mutualisms: The conservation of plant–pollinator interactions, Annu. Rev. Ecol. Syst. 29 (1998), pp. 83–112. doi: 10.1146/annurev.ecolsys.29.1.83
  • E. Leadbeater and L. Chittka, The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris), Behav. Ecol. Sociobiol. 61 (2007), pp. 1789–1796. doi: 10.1007/s00265-007-0412-4
  • K. Lunau and E.J. Maier, Innate colour preferences of flower visitors, J. Comp. Physiol. A 177 (1995), pp. 1–19. doi: 10.1007/BF00243394
  • R. Mitchell, R. Irwin, R. Flanagan, and J. Karron, Ecology and evolution of plant–pollinator interactions, Ann. Bot. 103 (2009), pp. 1355–1363. doi: 10.1093/aob/mcp122
  • R. Peakall, L. Jones, C.C. Bower, and B.G. Mackey, Bioclimatic assessment of the geographic and climatic limits to hybridisation in a sexually deceptive orchid system, Aust. J. Bot. 50 (2002), pp. 21–30. doi: 10.1071/BT01021.
  • C. Salzmann, A. Nardella, S. Cozzolino, and F.P. Schiestl, Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Ann. Bot. 100 (2007), pp. 757–765. doi: 10.1093/aob/mcm161
  • F.P. Schiestl, On the success of a swindle: pollination by deception in orchids, Naturwissenschaften 92 (2005), pp. 255–264. doi: 10.1007/s00114-005-0636-y.
  • G. Scopece, S. Cozzolino, S.D.D. Johnson, and F.P.P. Schiestl, Pollination efficiency and the evolution of specialized deceptive pollination systems, Am. Nat. 175 (2010), pp. 98–105. doi: 10.1086/648555.
  • A. Smithson and M. MacNair, Negative frequency-dependent selection by pollinators on artificial flowers without rewards, Evolution 51 (1997), pp. 715–723. doi: 10.1111/j.1558-5646.1997.tb03655.x
  • C. Sprengel, Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen, 1793.
  • S. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering, Westview Press, Cambridge, MA, 2001.
  • R. Tremblay, Trends in the pollination ecology of the Orchidaceae: Evolution and systematics, Can. J. Bot. 70 (1992), pp. 642–650. doi: 10.1139/b92-083
  • B. Wong and F. Schiestl, How an orchid harms its pollinator, Proc. R. Soc. B Biol. Sci. 269 (2002), pp. 1529–1532. doi: 10.1098/rspb.2002.2052