4,372
Views
42
CrossRef citations to date
0
Altmetric
Articles

Dynamics analysis of a predator–prey system with harvesting prey and disease in prey species

, &
Pages 342-374 | Received 07 Aug 2017, Accepted 13 Mar 2018, Published online: 04 Apr 2018

References

  • R. Bellman, L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mischenko, The mathematical theory of optimal processes, Math. Comput. 19(89) (1965), pp. 1–59. doi: 10.2307/2004131
  • L. Berec, E. Angulo, and F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evolut. 22(4) (2007), pp. 185–191. doi: 10.1016/j.tree.2006.12.002
  • S. Biswas, M. Saifuddin, S.K. Sasmal, S. Samanta, N. Pal, F. Ababneh, and J. Chattopadhyay, A delayed prey–predator system with prey subject to the strong Allee effect and disease, Nonlinear Dyn. 84(3) (2016), pp. 1569–1594. doi: 10.1007/s11071-015-2589-9
  • S. Biswas, S.K. Sasmal, S. Samanta, Md. Saifuddin, and J. Chattopadhyay, Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects, Nonlinear Dyn. 87 (2017), pp. 1553–1573. doi: 10.1007/s11071-016-3133-2
  • K. Chakraborty, S. Das, and T.K. Kar, Optimal control of effort of a stage structured prey–predator fishery model with harvesting, Nonlinear Anal. 12(6) (2011), pp. 3452–3467. doi: 10.1016/j.nonrwa.2011.06.007
  • J. Chattopadhy, R. Sarkar, and G. Ghosal, Removal of infected prey prevent limit cycle oscillations in an infected prey–predator system – a mathematical study, Ecol. Model. 156(2–3) (2002), pp. 113–121. doi: 10.1016/S0304-3800(02)00133-3
  • J. Chattopadhyay, G. Ghosal, and K.S. Chaudhuri, Nonselective harvesting of a prey–predator community with infected prey, Korean J. Comput. Appl. Math. 6(3) (1999), pp. 601–616.
  • M.I. Costa, Harvesting induced fluctuations: Insights from a thresholds management policy, Math. Biosci. 205(1) (2007), pp. 77–82. doi: 10.1016/j.mbs.2006.03.023
  • K.P. Das, A study of harvesting in a predator–prey model with disease in both populations, Math. Methods Appl. Sci. 39(11) (2016), pp. 2853–2870. doi: 10.1002/mma.3735
  • W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.
  • W. Hackbusch, A numerical method for solving parabolic equations with opposite orientations, Computing 20(3) (1978), pp. 229–240. doi: 10.1007/BF02251947
  • B.D. Hassard, N.D. Kazarinoff, and Y.H. Wan, Theroy and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
  • S.B. Hsu, S.G. Ruan, and T.H. Yang, Analysis of the three species Lotka–Volterra food web models with omnivory, J. Math. Anal. Appl. 426(2) (2015), pp. 659–687. doi: 10.1016/j.jmaa.2015.01.035
  • G.P. Hu and X.L. Li, Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey, Chaos Solitons Fractals 45(3) (2012), pp. 229–237. doi: 10.1016/j.chaos.2011.11.011
  • J.C. Huang, Y.J. Gong, and J. Chen, Multiple bifurcations in a predator–prey system of Holling and Leslie type with constant-yield prey, Int. J. Bifur. Chaos Appl. Sci. Eng. 23(10) (2013), p. 1350164. 24.
  • J.C. Huang, Y.J. Gong, and S.G. Ruan, Bifurcation analysis in a predator–prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B 18(8) (2014), pp. 2101–2121. doi: 10.3934/dcdsb.2013.18.2101
  • J.C. Huang, S.H. Liu, S.G. Ruan, and X.A. Zhang, Bogdanov–Takens bifurcation of codimension 3 in a predator–prey model with constant-yield predator harvesting, Comm. Pure Appl. Anal. 15(3) (2016), pp. 1041–1055. doi: 10.3934/cpaa.2016.15.1041
  • S. Jana, S. Guria, U. Das, T.K. Kar, and A. Ghorai, Effect of harvesting and infection on predator in a prey–predator system, Nonlinear Dyn. 81(1–2) (2015), pp. 1–14. doi: 10.1007/s11071-015-2040-2
  • A. Johri, N. Trivedi, A. Sisodiya, B. Sing, and S. Jain, Study of a prey–predator model with disease prey, Int. J. Contemp. Math. Sci. 7(9) (2012), pp. 489–498.
  • R. M. Anderson, and R. M. May, The invasion, persistence and spread of infectious diseases within animal and plant communities, Philos. Trans. R. Soc. Lond. Ser. B 314(1167) (1986), pp. 533–570. doi: 10.1098/rstb.1986.0072
  • S. Kant and V. Kumar, Stability analysis of predator–prey system with migrating prey and disease infection in both specise, Appl. Math. Model. 42 (2017), pp. 509–539. doi: 10.1016/j.apm.2016.10.003
  • W.O. Kermack and A.G. McKendrick, Contribution to the mathematical theory of epidemics-I, Proc. R. Soc. Lond. Ser. A 115(5) (1927), pp. 700–721. doi: 10.1098/rspa.1927.0118
  • Q.J.A. Khan, M. Al-Lawatia, and F.A. Al-Kharousi, Predator–prey harvesting model with fatal disease in prey, Math. Methods Appl. Sci. 39(10) (2016), pp. 2647–2658. doi: 10.1002/mma.3718
  • Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator–prey system, J. Math. Biol. 36(4) (1998), pp. 389–406. doi: 10.1007/s002850050105
  • D. Kumar and S.P. Chakrabarty, A comparative study of bioeconomic ratio-dependent predator–prey model with and without additional food to predators, Nonlinear Dyn. 80(1–2) (2015), pp. 23–38. doi: 10.1007/s11071-014-1848-5
  • J.P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4(1) (1968), pp. 57–65. doi: 10.1016/0022-0396(68)90048-X
  • A. Lotka, Element of Physical Biology, Williams and Wilkins, Baltimore, 1925.
  • Z.X. Luo, Optimal harvesting for a population dynamics problem with age-structure and diffusion, J. Appl. Math. Comput. 25(1) (2007), pp. 35–50. doi: 10.1007/BF02832337
  • Z.P. Ma, H.F. Huo, and H. Xiang, Hopf bifurcation for a delayed predator–prey diffusion system with Dirichlet boundary condition, Appl. Math. Comput. 311 (2017), pp. 1–18. doi: 10.1016/j.cam.2016.06.032
  • X.Y. Meng, H.F. Huo, and X. Hong, Hopf bifurcation in a three-species system with delays, J. Appl. Math. Comput. 35(1–2) (2011), pp. 635–661. doi: 10.1007/s12190-010-0383-x
  • X.Y. Meng, H.F. Huo, X.B. Zhang, and H. Xiang, Stability and Hopf bifurcation in a three-species system with feedback delays, Nonlinear Dyn. 64 (2011), pp. 349–364. doi: 10.1007/s11071-010-9866-4
  • S.G. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator–prey systems with discrete delays, Quart. Appl. Math. 59(1) (2001), pp. 159–173. doi: 10.1090/qam/1811101
  • D. Ryan and F.B. Hanson, Optimal harvesting of a logistic population in an environment with stochastic jumps, J. Math. Biol. 24(3) (1986), pp. 259–277. doi: 10.1007/BF00275637
  • S. Sharma and G.P. Samanta, Analysis of a two prey one predator system with disease in the first prey population, Int. J. Dyn. Control 3(3) (2015), pp. 210–224. doi: 10.1007/s40435-014-0107-4
  • Y.L. Song and J.J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos Solitons Fractals 22(1) (2004), pp. 75–91. doi: 10.1016/j.chaos.2003.12.075
  • V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Animal Ecol. 3(1) (1928), pp. 3–51.
  • F.Y. Wang, Y. Kuang, C.M. Ding, and S.W. Zhang, Stability and bifurcation of a stage-structured predator–prey model with both discrete and distributed delays, Chaos Solitons Fractals 46(1) (2013), pp. 19–27.
  • D.M. Xiao and L.S. Jennings, Bifurcations of a ratio-dependent predator–prey with constant rate harvesting, SIAM J. Appl. Math. 65(3) (2005), pp. 737–753. doi: 10.1137/S0036139903428719
  • D.M. Xiao and S.G. Ruan, Bogdanov–Takens bifurcations in predator–prey systems with constant rate harvesting, Fields Inst. Commun. 21 (1999), pp. 493–506.
  • R. Xu and S.H. Zhang, Modelling and analysis of a delayed predator–prey model with disease in the predator, Appl. Math. Comput. 224 (2013), pp. 372–386.
  • G. Zaman, Y.H. Kang, and I.H. Jung, Optimal treatment of an SIR epidemic model with time delay, BioSystems 98(1) (2009), pp. 43–50. doi: 10.1016/j.biosystems.2009.05.006
  • J.S. Zhang and S.L. Sun, Analysis of eco-epidemiological model with epidemic in the predator, J. Biomath. 20(2) (2005), pp. 157–164.
  • Y.A. Zhao and D.Q. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett. 34(1) (2014), pp. 90–93. doi: 10.1016/j.aml.2013.11.002
  • X.Y. Zhou, X. Shi, and X.Y. Song, Analysis of a delay prey–predator model with disease in the prey species only, J. Korean Math. Soc. 46(4) (2009), pp. 713–731. doi: 10.4134/JKMS.2009.46.4.713
  • X.Y. Zhou, J.G. Cui, X.Y. Shi, and X.Y. Song, A modified Leslie–Gower predator–prey model with prey infection, J. Appl. Math. Comput. 33(1–2) (2010), pp. 471–487. doi: 10.1007/s12190-009-0298-6