2,313
Views
8
CrossRef citations to date
0
Altmetric
Articles

An SIR pairwise epidemic model with infection age and demography

, &
Pages 486-508 | Received 02 Oct 2017, Accepted 07 May 2018, Published online: 01 Jun 2018

References

  • R.M. Anderson and R.M. May, Infectious Disease of Humans: Dynamics and Control, Oxford University Press, New York, 1992.
  • G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): A review, BMC Med. 12 (2014), p. 196. doi: 10.1186/s12916-014-0196-0
  • M.S. Cohen, Preventing sexual transmission of HIV, Clin. Infect. Dis. 45 (2007), pp. S287–S292. doi: 10.1086/522552
  • M. Eichner and K. Dietz, Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Am. J. Epidemiol. 158 (2003), pp. 110–117. doi: 10.1093/aje/kwg103
  • J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Province, RI, 1988.
  • T. House and M.J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface 8 (2011), pp. 67–73. doi: 10.1098/rsif.2010.0179
  • M. Iannelli, Mathematical Theory of Age-structured Population Dynamics, Giardini Editori E Stampatori, Pisa, 1995.
  • Z. Jin, G. Sun, and H. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng. 11 (2014), pp. 1295–1317. doi: 10.3934/mbe.2014.11.1295
  • C. Kamp, Untangling the interplay between epidemic spread and transmission network dynamic, PLoS Comput. Biol. 6 (2010), p. e1000984. doi: 10.1371/journal.pcbi.1000984
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. 115 (1927), pp. 700–721. doi: 10.1098/rspa.1927.0118
  • I.Z. Kiss, G. Röst, and Z. Vizi, Generalization of pairwise models to non-Markovian epidemics on networks, Phys. Rev. Lett. 115 (2015), p. 078701. doi: 10.1103/PhysRevLett.115.078701
  • M. Li, G. Sun, Y. Wu, J. Zhang, and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput. 237 (2014), pp. 582–594.
  • M. Li, Z. Jin, G. Sun, and J. Zhang, Modeling direct and indirect disease transmission using multi-group model, J. Math. Anal. Appl. 446 (2017), pp. 1292–1309. doi: 10.1016/j.jmaa.2016.09.043
  • J. Lindquist, J. Ma, P. van den Driessche, and F.H. Willeboordse, Effective degree network disease models, J. Math. Biol. 62 (2011), pp. 143–164. doi: 10.1007/s00285-010-0331-2
  • X.F. Luo, X. Zhang, G.Q. Sun, and Z. Jin, Epidemical dynamics of SIS pair approximation models on regular and random networks, Phys. A 410 (2014), pp. 144–153. doi: 10.1016/j.physa.2014.05.020
  • X. Luo, L. Chang, and Z. Jin, Demographics induce extinction of disease in an SIS model based on conditional Markov chain, J. Biol. Syst. 25 (2017), pp. 145–171. doi: 10.1142/S0218339017500085
  • P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ. 2001 (2001), pp. 1–35.
  • P. Magal and S. Ruan, On semilinear cauchy problems with non-dense domain, Adv. Differ. Equ. 14 (2009), pp. 1041–1084.
  • M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
  • J.C. Miller, A.C. Slim, and E.M. Volz, Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface 9 (2012), pp. 890–906. doi: 10.1098/rsif.2011.0403
  • H. Nishiura and M. Eichner, Infectiousness of smallpox relative to disease age: Estimates based on transmission network and incubation period., Epidemiol. Infect. 135 (2007), pp. 1145–1150.
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001), pp. 3200–3203. doi: 10.1103/PhysRevLett.86.3200
  • R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys. 87 (2015), pp. 120–131. doi: 10.1103/RevModPhys.87.925
  • C. Piccardi, A. Colombo, and R. Casagrandi, Connectivity interplays with age in shaping contagion over networks with vital dynamics, Phys. Rev. E 91 (2015), p. 022809. doi: 10.1103/PhysRevE.91.022809
  • D.A. Rand, Correlation equations and pair approximations for spatial ecologies, CWI Quarterly 12 (1999), pp. 329–368.
  • G. Röst, Z. Vizi, and I.Z. Kiss, Pairwise approximation for SIR type network epidemics with non-Markovian recovery, preprint (2016). Available at arXiv, 1605.02933.
  • N. Sherborne, J.C. Miller, K.B. Blyuss, and I.Z. Kiss, Mean-field models for non-Markovian epidemics on networks, J. Math. Biol. 76 (2018), pp. 755–778. doi: 10.1007/s00285-017-1155-0
  • P.L. Simon and I.Z. Kiss, Super compact pairwise model for SIS epidemic on heterogeneous networks, J. Complex Netw. 3 (2015), pp. 1–14. doi: 10.1093/comnet/cnu012
  • T.T. Soong, Fundamentals of Probability and Statistics for Engineers, Wiley, New York, 2004.
  • H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ. 3 (1990), pp. 1035–1066.
  • P. Van Mieghem and R. van de Bovenkamp, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks, Phys. Rev. Lett. 110 (2013), pp. 108701. doi: 10.1103/PhysRevLett.110.108701
  • G.F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • J. Yang and Y. Chen, Effect of infection age on an SIR epidemic model with demography on complex networks, Phys. A 479 (2017), pp. 527–541. doi: 10.1016/j.physa.2017.03.006
  • J. Yang, Y. Chen, and F. Xu, Effect of infection age on an SIS epidemic model on complex networks, J. Math. Biol. 73 (2016), pp. 1227–1249. doi: 10.1007/s00285-016-0991-7
  • D. Zwillinger and S. Kokoska, CRC Standard Probability and Statistics Tables and Formulae, CRC Press, London/Boca Raton, 1999.