2,038
Views
14
CrossRef citations to date
0
Altmetric
Articles

The large graph limit of a stochastic epidemic model on a dynamic multilayer network

, , & ORCID Icon
Pages 746-788 | Received 29 Mar 2017, Accepted 17 Aug 2018, Published online: 03 Sep 2018

References

  • M. Altmann, Susceptible-infected-removed epidemic models with dynamic partnerships, J. Math. Biol. 33(6) (1995), pp. 661–675.
  • M. Altmann, The deterministic limit of infectious disease models with dynamic partners, Math. Biosci. 150(2) (1998), pp. 153–175.
  • H. Andersson, Limit theorems for a random graph epidemic model, Ann. Appl. Probab. 8(1998), pp. 1331–1349.
  • H. Andersson and T. Britton, Stochastic Epidemic Models and their Statistical Analysis, Vol. 4, Springer, New York, 2000.
  • J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, and J. Wu, A final size relation for epidemic models, Math. Biosci. Eng. 4(2) (2007), p. 159–175.
  • D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. 106(51) (2009), pp. 21484–21489.
  • F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci. 212(1) (2008), pp. 69–87.
  • S. Bansal, B.T. Grenfell, and L.A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J. R. Soc. Interface 4(16) (2007), pp. 879–891.
  • S. Bansal, J. Read, B. Pourbohloul, and L.A. Meyers, The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn. 4(5) (2010), pp. 478–489.
  • A.D. Barbour and G. Reinert, Approximating the epidemic curve, Electron. J. Probab. 18(54) (2013), pp. 1–30.
  • M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys. Rev. Lett. 92(17) (2004), p. 178701. doi:doi: 10.1103/PhysRevLett.92.178701.
  • M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, J. Theoret. Biol. 235 (2005), pp. 275–288.
  • F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E 89(3) (2014), p. 032804. doi:doi: 10.1103/PhysRevE.89.032804.
  • L. Bengtsson, J. Gaudart, X. Lu, S. Moore, E. Wetter, K. Sallah, S. Rebaudet, and R. Piarroux, Using mobile phone data to predict the spatial spread of cholera, Sci. Rep. 5 (2015), p. 923. 10.1038/srep08.
  • T. Bohman and M. Picollelli, Sir epidemics on random graphs with a fixed degree sequence, Random Structures Algorithms 41(2) (2012), pp. 179–214.
  • D. Brockmann, Human mobility and spatial disease dynamics, in Reviews of nonlinear dynamics and complexity, vol 2, H.G. Schuster, eds., Wiley-VCH Verlag, GmbH Co, KGaA, Weinheim, Germany, 2010.
  • D. Brockmann and D. Helbing, The hidden geometry of complex, network-driven contagion phenomena, Science 342(6164) (2013), pp. 1337–1342.
  • C. Buono, L.G. Alvarez-Zuzek, P.A. Macri, and L.A. Braunstein, Epidemics in partially overlapped multiplex networks, PLoS ONE 9(3) (2014), p. 5.
  • A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A.J.G. del Amo, and S. Boccaletti, Modeling the multi-layer nature of the European air transport network: Resilience and passengers re-scheduling under random failures, Eur. Phys. J. Spec. Top. 215(1) (2013), pp. 23–33.
  • G. Chowell and H. Nishiura, Transmission dynamics and control of ebola virus disease (evd): A review, BMC Med. 12(1) (2014), p. 196.
  • V. Colizza, A. Barrat, M. Barth'elemy, and A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA 103 (2006), pp. 2015–2020.
  • C.E.M. Coltart, A.M. Johnson, and C.J.M. Whitty, Role of healthcare workers in early epidemic spread of Ebola: Policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control, BMC Med. 13 (2015), p. 271.
  • M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, and A. Arenas, Mathematical formulation of multilayer networks, Phys. Rev. X 3(4) (2013), p. 041022.
  • L. Decreusefond, J.S. Dhersin, P. Moyal, and V.C. Tran, Large graph limit for an SIR process in random network with heterogeneous connectivity, Ann. Appl. Probab. 22(2) (2012), pp. 541–575.
  • P.S. Dodds and D.J. Watts, Universal behavior in a generalized model of contagion, Phys. Rev. Lett. 92(21) (2004), pp. 218701(1)–218201(4).
  • S.F. Dowell, R. Mukunu, T.G. Ksiazek, A.S. Khan, P.E. Rollin, and C. Peters, Transmission of ebola hemorrhagic fever: A study of risk factors in family members, kikwit, democratic republic of the congo, 1995, J. Infectious Diseases 179(Supplement 1) (1999), pp. S87–S91.
  • J.M. Drake, R. Kaul, L.W. Alexander, S.M. O'Regan, A.M. Kramer, J.T. Pulliam, M.J. Ferrari, and A.W. Park, Ebola cases and health system demand in Liberia, PLoS Biol. 13(1) (2015), p. e1002056.
  • K.T. Eames and M.J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. 99(20) (2002), pp. 13330–13335.
  • K.T. Eames and M.J. Keeling, Monogamous networks and the spread of sexually transmitted diseases, Math. Biosci. 189(2) (2004), pp. 115–130.
  • D. Easley and J. Kleinberg, Networks, crowds, and markets: reasoning about a highly connected world, Cambridge University Press, Cambridge, 2010.
  • J.M. Epstein, J. Parker, D. Cummings, and R.A. Hammond, Coupled contagion dynamics of fear and disease: Mathematical and computational explorations, PLoS One 3(12) (2008), p. e3955.
  • D. Fisman, E. Khoo, and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model, PLoS Currents 6 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571.
  • S. Funk and V.A. Jansen, Interacting epidemics on overlay networks, Phys. Rev. E81(3) (2010), p. 036118.
  • S. Funk, E. Gilad, C. Watkins, and V.A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Pro. Natl. Acad. Sci. 106(16) (2009), pp. 6872–6877.
  • S. Funk, E. Gilad, and V. Jansen, Endemic disease, awareness, and local behavioural response, J. Theoret. Biol. 264(2) (2010), pp. 501–509.
  • M. Goeijenbier, J.J.A. van Kampen, C.B.E.M. Reusken, M.P.G. Koopmans, and E.C.M. van Gorp, Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis, J. Med. 72(9) (2014), pp. 442–448.
  • M.F. Gomes, A.P. Piontti, L. Rossi, D. Chao, I. Longini, M.E. Halloran, and A. Vespignani, Assessing the international spreading risk associated with the 2014 West African Ebola outbreak, PLoS Currents 6 (2014), p. 1. doi:10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5.
  • C. Granell, S. Gómez, and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks, Phys. Rev. Lett. 111(12) (2013), p. 128701.
  • P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci. 63(2) (1983), pp. 157–172.
  • T. Gross, C.J.D. D'Lima, and B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett. 96(20) (2006), p. 208701.
  • B.S. Hewlett and R.P. Amola, Cultural contexts of Ebola in northern Uganda, Emerg. Infect. Dis. 9 (2003), pp. 1242–1248.
  • T. House and M.J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface 8(54) (2011), pp. 67–73.
  • S. Janson, M. Luczak, and P. Windridge, Law of large numbers for the SIR epidemic on a random graph with given degrees, Random Structures Algorithms 45(4) (2014), pp. 724–761.
  • H.H. Jo, S.K. Baek, and H.T. Moon, Immunization dynamics on a two-layer network model, Phys. A 361(2) (2006), pp. 534–542.
  • M. Keeling, Correlation equations for endemic diseases: Externally imposed and internally generated heterogeneity, Proc. R. Soc. Lond. B 266(1422) (1999), pp. 953–960.
  • M.J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. Lond. B 266(1421) (1999), pp. 859–867.
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A 115 (1927), pp. 700–721.
  • M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, and M.A. Porter, Multilayer networks, J. Complex Networks 2 (2014), pp. 203–271.
  • T. Kratz, P. Roddy, A.T. Oloma, B. Jeffs, D.P. Ciruelo, O. de la Rosa, and M. Borchert, Ebola Virus Disease outbreak in Isiro, Democratic Republic of the Congo, 2012: Signs and symptoms, management and outcomes, PLoS ONE 10(6) (2015), p. e0129333.
  • T.G. Kurtz, Solutions of ordinary differential equations as limits of pure jump markov processes, J. Appl. Probab. 7(1) (1970), pp. 49–58.
  • J. Legrand, R. Grais, P. Boelle, A. Valleron, and A. Flahault, Understanding the dynamics of ebola epidemics, Epidemiol. Infection 135(04) (2007), pp. 610–621.
  • P.E. Lekone and B.F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62(4) (2006), pp. 1170–1177.
  • S. Lenhart and J.T. Workman, Optimal control applied to biological models, CRC Press, Boca Raton, FL, 2007.
  • K.Y. Leung, M. Kretzschmar, and O. Diekmann, Dynamic concurrent partnership networks incorporating demography, Theoret. Popul. Biol. 82 (2012), pp. 229–239.
  • K.Y. Leung, M. Kretzschmar, and O. Diekmann, SI infection on a dynamic partnership network: Characterization of R0, J. Math. Biol. 71 (2015), pp. 1–56.
  • M. Li, J. Ma, and P. van den Driessche, Model for disease dynamics of a waterborne pathogen on a random network, J. Math. Biol. 71(4) (2015), pp. 961–977.
  • J. Lindquist, J. Ma, P. van den Driessche, and F.H. Willeboordse, Effective degree network disease models, J. Math. Biol. 62(2) (2011), pp. 143–164.
  • J. Ma and D.J. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68(3) (2006), pp. 679–702.
  • J. Ma, P. van den Driessche, and F.H. Willeboordse, Effective degree household network disease model, J. Math. Biol. 66 (2013), pp. 75–94.
  • G.D. Maganga, J. Kapetshi, N. Berthet, B. Kebela Ilunga, F. Kabange, P. Mbala Kingebeni, V.Mondonge, J.J.T. Muyembe, E. Bertherat, S. Briand, J. Cabore, A. Epelboin, P. Formenty, G. Kobinger, L. González-Angulo, I. Labouba, J.-C. Manuguerra, J.-M. Okwo-Bele, C. Dye, and E.M. Leroy, Ebola virus disease in the Democratic Republic of Congo, New Engl. J. Med. 371(22) (2014), pp. 2083–2091.
  • A. Matanock, M.A. Arwady, P. Ayscue, J.D. Forrester, B. Gaddis, J.C. Hunter, B. Monroe, S.K. Pillai, C. Reed, I.J. Schafer, M. Massaquoi, B. Dahn, and K.M. De Cock, Ebola Virus Disease cases among health care workers not working in Ebola treatment units - Liberia, June-August, 2014, Morbidity Mortality Weekly Rep. 63(46) (2014), pp. 1077–1081.
  • R.M. May and A.L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E 64(6) (2001), p. 066112.
  • S. Merler, M. Ajelli, L. Fumanelli, M.F. Gomes, A.P. y Piontti, L. Rossi, D.L. Chao, I.M. Longini, M.E.Halloran, and A. Vespignani, Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis, Lancet Infect. Dis. 15(2) (2015), pp. 204–211.
  • P. Meyer, A decomposition theorem for supermartingales, Illinois J. Math. 6(2) (1962), pp. 193–205.
  • L.A. Meyers, B. Pourbohloul, M.E. Newman, D.M. Skowronski, and R.C. Brunham, Network theory and SARS: predicting outbreak diversity, J. Theoret. Biol. 232 (2005), pp. 71–81.
  • J.C. Miller, A note on a paper by Erik Volz: SIR dynamics in random networks, J. Math. Biol. 62(3) (2011), pp. 349–358.
  • J.C. Miller, Epidemics on networks with large initial conditions or changing structure, PLoS ONE9(7) (2014), p. e101421.
  • J.C. Miller and I.Z. Kiss, Epidemic spread in networks: Existing methods and current challenges, Math. Model. Nat. Phenom. 9(2) (2014), p. 4.
  • J.C. Miller and E.M. Volz, Incorporating disease and population structure into models of SIR disease in contact networks, PLoS ONE 8(8) (2013), p. e69162.
  • J.C. Miller, A.C. Slim, and E.M. Volz, Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface (2011), p. rsif20110403.
  • M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (2002), p. 016128. doi:doi: 10.1103/PhysRevE.66.016128.
  • M. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
  • A. Pandey, K.E. Atkins, J. Medlock, N. Wenzel, J.P. Townsend, J.E. Childs, T.G. Nyenswah, M.L.Ndeffo-Mbah, and A.P. Galvani, Strategies for containing Ebola in West Africa, Science 346(6212) (2014), pp. 991–995.
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14) (2001), pp. 3200–3203.
  • L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham, and P. Trapman, Eight challenges for network epidemic models, Epidemics 10 (2015), pp. 58–62.
  • L. Pellis, T. House, and M.J. Keeling, Exact and approximate moment closures for non-Markovian network epidemics, J. Theoret. Biol. 382 (2015), pp. 160–177.
  • M.A. Porter, J.P. Onnela, and P.J. Mucha, Communities in networks, Notices Amer. Math. Soc. 56(9) (2009), pp. 1082–1097. 1164–1166.
  • D. Rand, Correlation equations and pair approximations for spatial ecologies, Adv. Ecol. Theory 1 (2007), pp. 100–142. doi:doi: 10.1002/9781444311501.ch4.
  • C.M. Rivers, E.T. Lofgren, M. Marathe, S. Eubank, and B.L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, PLoS Currents 6 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.
  • T.H. Roels, A.S. Bloom, J. Buffington, G.L. Muhungu, W.R. MacKenzie, A.S. Khan, R. Ndambi, D.L. Noah, H.R. Rolka, C.J. Peters, and T.G. Ksiazek, Ebola hemorrhagive fever, Kikwit, Democratic Republic of the Congo, 1995: Risk factors for patients without a reported exposure, J. Infect. Dis. 179(Suppl 1) (1999), pp. S92–S97.
  • M.P. Rombach, M.A. Porter, J.H. Fowler, and P.J. Mucha, Core-periphery structure in networks, SIAM J. Appl. Math. 74(1) (2014), pp. 167–190.
  • F.D. Sahneh and C. Scoglio, May the best meme win!: New exploration of competitive epidemic spreading over arbitrary multi-layer networks, preprint (2013). Available at arXiv:1308.4880.
  • S.V. Scarpino, A. Iamarino, C. Wells, D. Yamin, M. Ndeffo-Mbah, N.S. Wenzel, S.J. Fox, T. Nyenswah, F.L. Altice, and A.P. Galvani, et al., Epidemiological and viral genomic sequence analysis of the 2014 Ebola outbreak reveals clustered transmission, Clin. Infect. Dis. 60(7) (2015), pp. 1079–1082. doi:doi: 10.1093/cid/ciu1131.
  • S. Shai and S. Dobson, Effect of resource constraints on intersimilar coupled networks, Phys. Rev. E 86(6) (2012), p. 066120. doi:doi: 10.1103/PhysRevE.86.066120.
  • S. Shai and S. Dobson, Coupled adaptive complex networks, Phys. Rev. E 87(4) (2013), p. 042812. doi:doi: 10.1103/PhysRevE.87.042812.
  • K.J. Sharkey, Deterministic epidemiological models at the individual level, J. Math. Biol. 57(3) (2008), pp. 311–331.
  • K.J. Sharkey, I.Z. Kiss, R.R. Wilkinson, and P.L. Simon, Exact equations for SIR epidemics on tree graphs, Bull. Math. Biol. 77(4) (2015), pp. 614–645.
  • L.B. Shaw and I.B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E 77(6) (2008), p. 066101. doi:doi: 10.1103/PhysRevE.77.066101.
  • A.J. Tatem, Y.L. Qiu, D.L. Smith, O. Sabot, A.S. Ali, and B. Moonen, The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents, Malar. J. 8 (2009), p.287.
  • B. Tsanou, G.M. Moremedi, R. Kaondera-Shava, J.M. Lubuma, and N. Morris, A simple mathematical model for Ebola in Africa, J. Biol. Dyn. 1(11) (2017), pp. 42–74. doi:doi: 10.1080/17513758.2016.1229817.
  • J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, Structural diversity in social contagion, Proc. Natl. Acad. Sci. USA 109(16) (2012), pp. 5962–5966.
  • E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Analytical computation of the epidemic threshold on temporal networks, Phys. Rev. X 5(2) (2015), p. 021005.
  • E. Valdano, C. Poletto, and V. Colizza, Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution, Eur. Phys. J. B 88(12) (2015), pp. 1–11.
  • L. Valdez, H.H.A. Rêgo, H. Stanley, and L. Braunstein, Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies, preprint (2015). Available at arXiv:1502.01326.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • R. Van Der Hofstad, Random graphs and complex networks (2009), p. 11. Available on http://www.win.tue.nl/rhofstad/NotesRGCN.pdf.
  • E. Volz, SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol. 56(3) (2008), pp. 293–310.
  • E. Volz and L.A. Meyers, Susceptible–infected–recovered epidemics in dynamic contact networks, Proc. R. Soc. Lond. B 274(1628) (2007), pp. 2925–2934.
  • Y. Wang and G. Xiao, Effects of interconnections on epidemics in network of networks, in 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Wuhan, IEEE, 2011, pp. 1–4.
  • D.J. Watts and S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393(6684) (1998), pp. 440–442.
  • G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi, and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing, PLoS Currents 7 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a.
  • X. Wei, N. Valler, B.A. Prakash, I. Neamtiu, M. Faloutsos, and C. Faloutsos, Competing memes propagation on networks: A case study of composite networks, ACM SIGCOMM Comput. Commun. Rev. 42(5) (2012), pp. 5–12.
  • J.S. Weitz and J. Dushoff, Modeling post-death transmission of Ebola: Challenges for inference and opportunities for control, Sci. Rep. 5 (2015), p. 8751. doi:doi: 10.1038/srep08751.
  • C. Wells, D. Yamin, M.L. Ndeffo-Mbah, N. Wenzel, S.G. Gaffney, J.P. Townsend, L.A. Meyers, M.Fallah, T.G. Nyenswah, F.L. Altice, K.E. Atkins, and A.P. Galvani, Harnessing case isolation and ring vaccination to control Ebola, PLoS Negl. Trop. Dis. 9(6) (2015), p. e0003794. doi:doi: 10.1371/journal.pntd.0003794.
  • A. Wesolowski, N. Eagle, A.J. Tatem, D.L. Smith, A.M. Noor, R.W. Snow, and C.O. Buckee, Quantifying the impact of human mobility on malaria, Science 338(6104) (2012), pp. 267–270.
  • D.J. Wilkinson, Stochastic modelling for quantitative description of heterogeneous biological systems, Nat. Rev. Genet. 10(2) (2009), pp. 122–133.
  • O. Yağan and V. Gligor, Analysis of complex contagions in random multiplex networks, Phys. Rev. E 86(3) (2012), p. 036103. doi:doi: 10.1103/PhysRevE.86.036103.
  • O. Yagan, D. Qian, J. Zhang, and D. Cochran, Conjoining speeds up information diffusion in overlaying social-physical networks, IEEE J. Selected Areas Commun. 31(6) (2013), pp. 1038–1048.
  • D.H. Zanette and S. Risau-Gusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys. 34(1–2) (2008), pp. 135–148.
  • D. Zhao, L. Li, S. Li, Y. Huo, and Y. Yang, Identifying influential spreaders in interconnected networks, Phys. Scripta 89(1) (2014), p. 015203. doi:doi: 10.1088/0031-8949/89/01/015203.