1,051
Views
3
CrossRef citations to date
0
Altmetric
Articles

The balance simplex in non-competitive 2-species scaled Lotka–Volterra systems

ORCID Icon & ORCID Icon
Pages 128-147 | Received 08 Jun 2018, Accepted 21 Jan 2019, Published online: 06 Feb 2019

References

  • S. Baigent, Convexity-preserving flows of totally competitive planar Lotka–Volterra equations and the geometry of the carrying simplex, Proc. Edinburgh Math. Soc. 55 (2012), pp. 53–63.
  • S. Baigent, Geometry of carrying simplices of 3-species competitive Lotka–Volterra systems, Nonlinearity 26 (2013), pp. 1001. doi: 10.1088/0951-7715/26/4/1001
  • S. Baigent and A. Ching, Manifolds of balance in planar ecological systems, Preprint (2018).
  • W. Bailey, Generalized Hypergeometric Series, Cambridge tracts in mathematics and mathematical physics, Stechert-Hafner service agency, 1964, https://books.google.co.uk/books?id=QVM5XwAACAAJ.
  • H. Bateman, Higher Transcendental Functions [Volumes I–III], McGraw-Hill Book Company, New York, 1953
  • G. Blé, V. Castellanos, J. Llibre, and I. Quilantán, Integrability and global dynamics of the May–Leonard model, Nonlinear Anal.: Real World Appl. 14 (2013), pp. 280–293. doi: 10.1016/j.nonrwa.2012.06.004
  • I.M. Bomze, Lotka-Volterra equation and replicator dynamics: a two-dimensional classification, Biolo. Cybern. 48 (1983), pp. 201–211. doi: 10.1007/BF00318088
  • I.M. Bomze, Lotka-Volterra equation and replicator dynamics: new issues in classification, Biol. Cybern. 72 (1995), pp. 447–453. doi: 10.1007/BF00201420
  • X. Chen, J. Jiang, and L. Niu, On Lotka–Volterra equations with identical minimal intrinsic growth rate, SIAM J. Appl. Dyn. Syst. 14 (2015), pp. 1558–1599. doi: 10.1137/15M1006878
  • C.W. Chi, L.I. Wu, and S.B. Hsu, On the asymmetric May–Leonard model of three competing species, SIAM J. Appl. Math. 58 (1998), pp. 211–226. doi: 10.1137/S0036139994272060
  • W.A. Coppel, A survey of quadratic systems, J. Diff. Equ. 2 (1996), pp. 293–304. doi: 10.1016/0022-0396(66)90070-2
  • P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol. 11 (1981), pp. 319–335. https://doi.org/10.1007/BF00276900.
  • E. Francomano, F.M. Hilker, M. Paliaga, and E. Venturino, Separatrix reconstruction to identify tipping points in an eco-epidemiological model, Appl. Math. Comput. 318 (2018), pp. 80–91.
  • M.W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity 1 (1988), pp. 51. doi: 10.1088/0951-7715/1/1/003
  • M.W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn. 2 (2008), pp. 169–179. doi: 10.1080/17513750801939236
  • J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998
  • J. Jiang, J. Mierczyński, and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Diff. Equ. 246 (2009), pp. 1623–1672. doi: 10.1016/j.jde.2008.10.008
  • J. Jiang and L. Niu, On the equivalent classification of three-dimensional competitive Leslie-Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol. 74 (2016), pp. 1–39.
  • M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001
  • R.S. Maier, The integration of three-dimensional Lotka-Volterra systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469 (2013), pp. 20120693–20120693. doi: 10.1098/rspa.2012.0693
  • R. May and W. Leonard, Nonlinear Aspects of Competition Between Three Species, SIAM J. Appl. Math. 29 (1975), pp. 1–12. doi: 10.1137/0129022
  • R.M. May and W.J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), pp. 243–253. doi: 10.1137/0129022
  • J. Mierczyński, Smoothness of unordered curves in two-dimensional strongly competitive systems, Appl. Math. 25 (1999), pp. 449–455.
  • L. Perko, Differential equations and dynamical systems, Vol. 7, Springer Science & Business Media, 2013.
  • W. Shen and Y. Wang, Carrying simplices in nonautonomous and random competitive Kolmogorov systems, J. Diff. Equ. 245 (2008), pp. 1–29. doi: 10.1016/j.jde.2008.03.024
  • A. Tineo, On the convexity of the carrying simplex of planar Lotka–Volterra competitive systems, Appl. Math. Comput. 123 (2001), pp. 93–108.
  • M. van Baalen, V. Krivan, P.C. van Rijn, and M.W. Sabelis, Alternative food, switching predators, and the persistence of predator-prey systems, Am. Nat. 157 (2001), pp. 512–524.
  • V.S. Varma, Exact solutions for a special prey-predator or competing species system, J. Math. Biol.39 (1977), pp. 619–622. doi: 10.1007/BF02461208
  • N.J. Vilenkin and A.U. Klimyk, Representation of Lie Groups and Special Functions: Volume 1., Mathematics and its Applications, Kluwer Academic Publishers, 1991, https://www.springer.com/gb/book/9780792314660.
  • E.C. Zeeman and M.L. Zeeman, An n-dimensional competitive Lotka–Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity 15 (2002), pp. 2019. doi: 10.1088/0951-7715/15/6/312
  • E.C. Zeeman, Classification of quadratic carrying simplices in two-dimensional competitive Lotka Volterra systems, Nonlinearity 15 (2002), pp. 1993–2018. doi: 10.1088/0951-7715/15/6/311
  • E.C. Zeeman and M.L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, Lecture Notes in Pure and Appl. Math, 1993.
  • E.C. Zeeman and M.L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc. 355 (2003), pp. 713–734. doi: 10.1090/S0002-9947-02-03103-3
  • M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems, Dyn. Stab. Syst. 8 (1993), pp. 189–216.