1,064
Views
5
CrossRef citations to date
0
Altmetric
Articles

Consumer-resource coexistence as a means of reducing infectious disease

&
Pages 177-191 | Received 08 Dec 2017, Accepted 28 Jan 2019, Published online: 14 Feb 2019

References

  • R.M. Anderson and R.M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Trans. R. Soc. Lond. B 291(1054) (1981), pp. 451–524.
  • P. Auger, R. Mchich, T. Chowdhury, G. Sallet, M. Tchuente, and J. Chattopadhyay, Effects of a disease affecting a predator on the dynamics of a predator–prey system, J. Theor. Biol. 258(3) (2009), pp. 344–351.
  • M. Barfield, M. Martcheva, N. Tuncer, and R.D. Holt, Backward bifurcation and oscillations in a nested immuno-eco-epidemiological model, J. Biol. Dyn. 12(1) (2018), pp. 51–88.
  • A.M. Bate and F.M. Hilker, Complex dynamics in an eco-epidemiological model, Bull Math. Biol.75(11) (2013), pp. 2059–2078.
  • F. Brauer, Backward bifurcations in simple vaccination models, J. Math. Anal. Appl. 298(2) (2004), pp. 418–431.
  • F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model. 2(2) (2017), pp. 113–127.
  • C. Castillo-Chavez, K. Cooke, W. Huang, and S.A. Levin, Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus, Appl. Math. Lett. 2(4) (1989), pp. 327–331.
  • C. Castillo-Chavez, Z. Feng, and W. Huang, On the computation of R0 and its role on global stability in Mathematical Approaches for Emerging and Re-emerging Infectious Diseases: An Introduction, IMA 125, Springer-Verlag; 2002
  • R.D. Cavanagh, X. Lambin, T. Ergon, M. Bennett, I.M. Graham, D. van Soolingen, and M. Begon, Disease dynamics in cyclic populations of field voles (Microtus agrestis): Cowpox virus and vole tuberculosis (Mycobacterium microti), Proc. R. Soc. B Biol. Sci. 271(1541) (2004), pp. 859–867.
  • S. Chakraborty, B.W. Kooi, B. Biswas, and J. Chattopadhyay, Revealing the role of predator interference in a predatorprey system with disease in prey population, Ecol. Complex. 21 (2015), pp. 100–111.
  • J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal. Theory Methods Appl. 36 (6), (1999), pp. 747–766.
  • C.T. Codeo, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases 1 (1), (2001), pp. 209.
  • O.C. Collins and K.J. Duffy, Consumption threshold used to investigate stability and ecological dominance in consumer-resource dynamics, Ecol. Model. 319 (2016), pp. 155–162.
  • O.C. Collins and K.J. Duffy, Optimal control of maize foliar diseases using the plants population dynamics, Acta Agric. Scand B Soil Plant Sci. 66 (2016), pp. 20–26.
  • P. Daszak, A.A. Cunningham, and A.D. Hyatt, Emerging infectious diseases of wildlife–threats to biodiversity and human health, Science 287 (2000), pp. 443–449.
  • K.J. Duffy, Simulations to investigate animal movement effects on population, Nat. Resour. Model.24 (2001), pp. 48–60.
  • K.J. Duffy and O.C Collins, Identifying stability conditions and Hopf bifurcations in a consumer resource model using a consumption threshold, Ecol. Complex. 28 (2016), pp. 212–217.
  • M.A. Duffy, J.M. Housley, R.M. Penczykowski, C.E. Caceres, and S.E. Hall, Unhealthy herds: Indirect effects of predators enhance two drivers of disease spread, Funct. Ecol. 25(5) (2011), pp. 945–953.
  • J. Dushoff, W. Huang, and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol. 36(3) (1998), pp. 227–248.
  • J.M. Fryxell, C. Packer, K. McCann, E.J. Solberg, and B-E. Sther, Resource management cycles and the sustainability of harvested wildlife populations, Science 328 (5980), (2010), pp. 903–906.
  • S. Greenhalgh, A.P. Galvani, and J. Medlock, Disease elimination and re-emergence in differential-equation models, J. Theor. Biol. 387 (2015), pp. 174–180.
  • A.B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl.395(1) (2012), pp. 355–365.
  • M. Haque and E. Venturino, The role of transmissible diseases in the Holling-Tanner predator-prey model, Theor. Popul. Biol. 70(3) (2006), pp. 273–288.
  • M.J. Hatcher, J.T. Dick, and A.M. Dunn, How parasites affect interactions between competitors and predators, Ecol. Lett. 9 (11), (2006), pp. 1253–1271.
  • H.W. Hethcote, W. Wang, L. Han, and Z. Ma, A predatorprey model with infected prey, Theor. Popul. Biol. 66(3) (2004), pp. 259–268.
  • F.M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, J. Theor. Biol.255(3) (2008), pp. 299–306.
  • R.D. Holt and M. Roy, Predation can increase the prevalence of infectious diseases, Am. Nat. 169(5) (2007), pp. 690–699.
  • P.J. Hurtado, S.R. Hall, and S.P. Ellner, Infectious disease in consumer populations: Dynamic consequences of resource-mediated transmission and infectiousness, Theor. Ecol. 7 (2014), pp. 163–179.
  • P.T. Johnson, D.L. Preston, J.T. Hoverman, and K.L. Richgels, Biodiversity decreases disease through predictable changes in host community competence, Nature 494 (2013), pp. 230–233.
  • F. Keesing, L.K. Belden, P. Daszak, A. Dobson, C.D. Harvell, R.D. Holt, P. Hudson, A. Jolles, K.E.Jones, C.E. Mitchell, and S.S. Myers, Impacts of biodiversity on the emergence and transmission of infectious diseases, Nature 468 (2010), pp. 647–652.
  • B.W. Kooi, G.A.K. van Voorn, and K. pada Das, Stabilisation and complex dynamics in a predator-prey model with predator suffering from an infectious disease, Ecol. Complex. 8 (2011), pp. 113–122.
  • B.W. Kooi and E. Venturino, Ecoepidemic predator–prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci. 274 (2016), pp. 58–72.
  • S. Liao and J. Wang, Stability analysis and application of a mathematical cholera model, Math. Biosci. Eng. 8 (2011), pp. 733–752.
  • H. McCallum, N. Barlow, and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol. 16(6) (2001), pp. 295–300.
  • Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, and J.G. Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. R. Acad. Sci. 108 (21), (2011), pp. 8767–8772.
  • T. Nakazawa, T. Yamanaka, and S. Urano, Model analysis for plant disease dynamics co-mediated by herbivory and herbivore-borne phytopathogens, Biol. Lett. 8 (2012), pp. 685–688.
  • N. Chitnis, J.M. Cushing, J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67(1) (2006), pp. 24–45.
  • N. Owen-Smith, Functional heterogeneity in resources within landscapes and herbivore population dynamics, Landscape Ecol. 19 (2004), pp. 761–771.
  • C. Packer, R.D. Holt, P.J. Hudson, K.D. Lafferty, and A.P. Dobson, Keeping the herds healthy and alert: Implications of predator control for infectious disease, Ecol. Lett. 6(9) (2003), pp. 797–802.
  • K. Pada Das, K. Kundu, and J.A. Chattopadhyay, A predator-prey mathematical model with both the populations affected by diseases, Ecol. Complex. 8 (2011), pp. 68–80.
  • A.H. Robbins, M.D. Borden, B.S. Windmiller, M. Niezgoda, L.C. Marcus, S.M. O'Brien, S.M. Kreindel, M.W. McGuill, A. DeMariaJr, C.E. Rupprecht, and S. Rowell, Prevention of the spread of rabies to wildlife by oral vaccination of raccoons in Massachusetts, J. Am. Vet. Med. Assoc. 213(10) (1998), pp. 1407–1412.
  • R. Ross, The Prevention of Malaria, 2nd ed. John Murray, London, UK, 1911.
  • J.J. Tewa, V.Y. Djeumen, and S. Bowong, Predator-prey model with Holling response function of type II and SIS infectious disease, Appl. Math. Model. 37 (2013), pp. 4825–4841.
  • J.H. Tien and D.J.D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol. 72 (2010), pp. 1506–1533.
  • P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, Princeton, NJ, 2003.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • E. Venturino, Ecoepidemiology: a more comprehensive view of population interactions, Math. Model Nat. Phenom. 11(1) (2016), pp. 49–90.