1,950
Views
22
CrossRef citations to date
0
Altmetric
Articles

Bifurcation analysis and chaos control for a plant–herbivore model with weak predator functional response

ORCID Icon, , &
Pages 481-501 | Received 24 Feb 2019, Accepted 27 Jun 2019, Published online: 09 Jul 2019

References

  • M.A. Abbasi and Q. Din, Under the influence of crowding effects: Stability, bifurcation and chaos control for a discrete-time predator–prey model, Int. J. Biomath. 12(4) (2019), p. 1950044.
  • K.C. Abbott and G. Dwyer, Food limitation and insect outbreaks: Complex dynamics in plant–herbivore models, J. Anim. Ecol. 76 (2007), pp. 1004–1014.
  • L.J.S. Allen, M.K. Hannigan, and M.J. Strauss, Mathematical analysis of a model for a plant–herbivore system, Bull. Math. Biol. 55(4) (1993), pp. 847–864.
  • L.J.S. Allen, M.J. Strauss, H.G. Thorvilson, and W.N. Lipe, A preliminary mathematical model of the apple twig borer (Coleoptera: Bostrichidae) and grapes on the Texas High Plains, Ecol. Model. 58 (1991), pp. 369–382.
  • R. Beiriger, The bionomics of Amphicerus bicaudatus (say), the apple twig borer, on the Texas High Plains, M.Sc. thesis, Texas Tech University, Lubbock, TX, 1988.
  • R. Beiriger, H. Thorvilson, W. Eipe, and D. Rummel, The life history of the apple twig borer, Proceedings of the Texas Grape Growers Association, Vol. 12, 1988, pp. 101–106.
  • R. Beiriger, H. Thorvilson, W. Lipe, and D. Rummel, Determination of adult apple twig borer sex based on a comparison of internal and external morphology, Southwest. Entomol. 14 (1989), pp. 199–203.
  • Y.M. Buckley, M. Rees, A.W. Sheppard, and M.J. Smyth, Stable coexistence of an invasive plant and biocontrol agent: A parameterized coupled plant–herbivore model, J. Appl. Ecol. 42 (2005), pp. 70–79.
  • J. Carr, Application of Center Manifold Theory, Springer-Verlag, New York, 1981.
  • C. Castillo-Chavez, Z. Feng, and W. Huang, Global dynamics of a plant–herbivore model with toxin-determined functional response, SIAM J. Appl. Math. 72(4) (2012), pp. 1002–1020.
  • Q. Cui, Q. Zhang, Z. Qiu, and Z. Hu, Complex dynamics of a discrete-time predator–prey system with Holling IV functional response, Chaos Soliton Fract. 87 (2016), pp. 158–171.
  • Q. Din, Global behavior of a plant–herbivore model, Adv. Differ. Equ. 2015 (2015), p. 119.
  • Q. Din, Complexity and chaos control in a discrete-time prey–predator model, Commun. Nonlinear Sci. Numer. Simul. 49 (2017), pp. 113–134.
  • Q. Din, Neimark–Sacker bifurcation and chaos control in Hassell–Varley model, J. Differ. Equ. Appl. 23(4) (2017), pp. 741–762.
  • Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem. 56(3) (2018), pp. 904–931.
  • Q. Din, Controlling chaos in a discrete-time prey–predator model with Allee effects, Int. J. Dynam. Control 6(2) (2018), pp. 858–872.
  • Q. Din, Qualitative analysis and chaos control in a density-dependent host–parasitoid system, Int. J. Dynam. Control 6(2) (2018), pp. 778–798.
  • Q. Din, A novel chaos control strategy for discrete-time Brusselator models, J. Math. Chem. 56(10) (2018), pp. 3045–3075.
  • Q. Din, Stability, bifurcation analysis and chaos control for a predator–prey system, J. Vib. Control 25(3) (2019), pp. 612–626.
  • Q. Din, T. Donchev, and D. Kolev, Stability: Bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic acid reaction, MATCH Commun. Math. Comput. Chem. 79(3) (2018), pp. 577–606.
  • Q. Din, A.A. Elsadany, and H. Khalil, Neimark–Sacker bifurcation and chaos control in a fractional-order plant–herbivore model, Discrete Dyn. Nat. Soc. 2017 (2017), pp. 1–15.
  • Q. Din, Ö.A. Gümüş, and H. Khalil, Neimark–Sacker bifurcation and chaotic behaviour of a modified host–parasitoid model, Z. Naturforsch. A 72(1) (2017), pp. 25–37.
  • Q. Din and M. Hussain, Controlling chaos and Neimark–Sacker bifurcation in a host–parasitoid model, Asian J. Control 21(3) (2019), pp. 1202–1215.
  • Q. Din and M.A. Iqbal, Bifurcation analysis and chaos control for a discrete-time enzyme model, Z. Naturforsch. A 74(1) (2019), pp. 1–14.
  • M. El-Shahed, A.M. Ahmed, and I.M.E. Abdelstar, Dynamics of a plant–herbivore model with fractional order, Progr. Fract. Differ. Appl. 3(1) (2017), pp. 59–67.
  • Z. Feng and D.L. DeAngelis, Mathematical Models of Plant–Herbivore Interactions, CRC Press, Taylor and Francis Group, Boca Raton, 2018.
  • Z. Feng, Z. Qiu, R. Liu, and D.L. DeAngelis, Dynamics of a plant–herbivore–predator system with plant-toxicity, Math. Biosci. 229(2) (2011), pp. 190–204.
  • J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
  • S.S. Jothi and M. Gunasekaran, Chaos and bifurcation analysis of plant–herbivore system with intra-specific competitions, Int. J. Adv. Res. 3(8) (2015), pp. 1359–1363.
  • Y. Kang, D. Armbruster, and Y. Kuang, Dynamics of a plant–herbivore model, J. Biol. Dyn. 2(2) (2008), pp. 89–101.
  • S. Kartal, Dynamics of a plant–herbivore model with differential–difference equations, Cogent Math. 3(1) (2016), p. 1136198.
  • A.Q. Khan, J. Ma, and D. Xiao, Bifurcations of a two-dimensional discrete time plant–herbivore system, Commun. Nonlinear Sci. Numer. Simul. 39 (2016), pp. 185–198.
  • Y. Kuang, J. Huisman, and J.J. Elser, Stoichiometric plant–herbivore models and their interpretation, Math. Biosci. Eng. 1(2) (2004), pp. 215–222.
  • M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/CRC, New York, 2002.
  • M.R.S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, New York, 2002.
  • Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1997.
  • Y. Li, Z. Feng, R. Swihart, J. Bryant, and H. Huntley, Modeling plant toxicity on plant–herbivore dynamics, J. Dynam. Differ. Equ. 18(4) (2006), pp. 1021–1024.
  • R. Liu, Z. Feng, H. Zhu, and D.L. DeAngelis, Bifurcation analysis of a plant–herbivore model with toxin-determined functional response, J. Differ. Equ. 245 (2008), pp. 442–467.
  • X.S. Luo, G.R. Chen, B.H. Wang, and J.Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Soliton Fract. 18(4) (2003), pp. 775–783.
  • S. Lynch, Dynamical Systems with Applications Using Mathematica, Birkhäuser, Boston, 2007.
  • K. Ogata, Modern Control Engineering, 2nd ed., Prentice-Hall, Englewood, NJ, 1997.
  • E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64(11) (1990), pp. 1196–1199.
  • C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, Boca Raton, New York, 1999.
  • F.J. Romeiras, C. Grebogi, E. Ott, and W.P. Dayawansa, Controlling chaotic dynamical systems, Physica D 58 (1992), pp. 165–192.
  • T. Saha and M. Bandyopadhyay, Dynamical analysis of a plant–herbivore model bifurcation and global stability, J. Appl. Math. Comput. 19(1–2) (2005), pp. 327–344.
  • E. Schöll and H.G. Schuster, Handbook of Chaos Control, Wiley-VCH, Weinheim, 2007.
  • G. Sui, M. Fan, I. Loladze, and Y. Kuang, The dynamics of a stoichiometric plant–herbivore model and its discrete analog, Math. Biosci. Eng. 4(1) (2007), pp. 29–46.
  • Y.H. Wan, Computation of the stability condition for the Hopf bifurcation of diffeomorphism on R2, SIAM J. Appl. Math. 34 (1978), pp. 167–175.
  • S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.
  • L-G. Yuan and Q-G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system, Appl. Math. Model. 39(8) (2015), pp. 2345–2362.
  • X. Zhang, Q.L. Zhang, and V. Sreeram, Bifurcation analysis and control of a discrete harvested prey–predator system with Beddington–DeAngelis functional response, J. Franklin Inst. 347 (2010), pp. 1076–1096.
  • Y. Zhao, Z. Feng, Y. Zheng, and X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant–herbivore model with toxin-determined functional response, J. Differ. Equ. 258(8) (2015), pp. 2847–2872.