1,254
Views
5
CrossRef citations to date
0
Altmetric
Articles

Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection

, , &
Pages 675-705 | Received 12 Jan 2018, Accepted 14 Oct 2019, Published online: 01 Nov 2019

References

  • J.P. Aparicio and C. Castillo-Chavez, Mathematical modelling of tuberculosis epidemics, Math. Biosci. Eng. 6 (2009), pp. 209–237. doi: 10.3934/mbe.2009.6.209
  • J.P. Aparicio, A.F. Capurro, and C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol. 206 (2000), pp. 327–341. doi: 10.1006/jtbi.2000.2129
  • J.P. Aparicio, A.F. Capurro, and C. Castillo-Chavez, Markers of disease evolution: The case of tuberculosis, J. Theor. Biol. 215 (2002), pp. 227–237. doi: 10.1006/jtbi.2001.2489
  • G. Bjune, Tuberculosis in the 21st century: An emerging pandemic? Norsk Epidemiologi 15 (2005), pp. 133–139.
  • S.M Blower and T. Chou, Modeling the emergence of the ‘hot zones’ tuberculosis and the amplification dynamics of drug resistance, Nat. Med. 10 (2004), pp. 1111–1116. doi: 10.1038/nm1102
  • S.M. Blower, A.R. McLean, T.C. Porco, P.M. Small, P.C. Hopwell, M.A. Sanchez, and A.R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nat. Med. 1 (1995), pp. 815–821. doi: 10.1038/nm0895-815
  • S.M. Blower, P.M. Small, and P.C. Hopewell, Control strategies for tuberculosis epidemics: New models for old problems, Science 273 (1996), pp. 497–500. doi: 10.1126/science.273.5274.497
  • F. Brauer, Z. Shuai, and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng. 10 (2013), pp. 1335–1349. doi: 10.3934/mbe.2013.10.1335
  • T.F. Brewer and S.J. Heymann, To control and beyond: Moving towards eliminating the global tuberculosis threat, J. Epidemiol. Community Health 58 (2004), pp. 822–825. doi: 10.1136/jech.2003.008664
  • C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997), pp. 629–656. doi: 10.1007/s002850050069
  • C. Castillo-Chavez and Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci. 151 (1998), pp. 135–154. doi: 10.1016/S0025-5564(98)10016-0
  • C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1(2) (2004), pp. 361–404. doi: 10.3934/mbe.2004.1.361
  • Y. Chen, J. Yang, and F. Zhang, The global stability of an SIRS model with infection age, Math. Biosci. Eng. 11 (2014), pp. 449–469. doi: 10.3934/mbe.2014.11.449
  • E. Corbett, C. Watt, N. Walker, D. Maher, B. Williams, M. Raviglione, and C. Dye, The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic, Arch. Intern. Med. 163 (2003), pp. 1009–1021. doi: 10.1001/archinte.163.9.1009
  • X. Duan, S. Yuan, Z. Qiu, and J. Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl. 68 (2014), pp. 288–308. doi: 10.1016/j.camwa.2014.06.002
  • X. Duan, S. Yuan, and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput. 226 (2014), pp. 528–540.
  • A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlineaity 24 (2011), pp. 2891–2911. doi: 10.1088/0951-7715/24/10/012
  • C. Dye and B.G. Williams, Criteria for the control of drug-resistant tuberculosis, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 8180–8185. doi: 10.1073/pnas.140102797
  • Z. Feng, C. Castillo-Chavez, and A.F. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Popul. Biol. 57 (2000), pp. 235–247. doi: 10.1006/tpbi.2000.1451
  • Z. Feng, W. Huang, and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis, J. Dyn. Differ. Equ. 13 (2001), pp. 425–452. doi: 10.1023/A:1016688209771
  • Z. Feng, M. Iannelli, and F.A. Milner, A two-strain tuberculosis model with age of infection, SIAM J. Appl. Math. 62 (2002), pp. 1634–1656. doi: 10.1137/S003613990038205X
  • H. Guo, Global dynamics of a mathematical model of tuberculosis, Can. Appl. Math. Quart. 13(4) (2005), pp. 313–323.
  • J.K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal. 20 (1989), pp. 388–395. doi: 10.1137/0520025
  • M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C.N.R), Giardini, Pisa, 1995.
  • S. Lawn, R. Wood, and R. Wilkinson, Changing concepts of ‘latent tuberculosis infection’ in patients living with HIV infection, Clin. Dev. Immunol. 2011 (2011), p. 980594. doi: 10.1155/2011/980594
  • P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ. 2001(65) (2001), pp. 1–35.
  • P. Magal, C.C. McCluskey, and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal. 89 (2010), pp. 1109–1140. doi: 10.1080/00036810903208122
  • C.C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng. 9 (2012), pp. 819–841. doi: 10.3934/mbe.2012.9.819
  • B. Miller, Preventive therapy for tuberculosis, Med. Clin. North Am. 77 (1993), pp. 1263–1275. doi: 10.1016/S0025-7125(16)30192-4
  • P. Rodriguesa, M.G.M. Gomes, and C. Rebelo, Drug resistance in tuberculosis: A reinfection model, Theor. Popul. Biol. 71 (2007), pp. 196–212. doi: 10.1016/j.tpb.2006.10.004
  • H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
  • C. Ted and M. Megan, Modeling epidemics of multidrug resistant M. tuberculosis of heterogeneous fitness, Nat. Med. 10 (2004), pp. 1117–1121. doi: 10.1038/nm1110
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • W.H.O. Report, Global Tuberculosis Control: Epidemiology, Strategy, Financing, World Health Organization, Geneva, 2009.
  • G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • R. Xu, Global dynamics of an epidemiological model with age of infection and disease relapse, J. Biol. Dyn, 12(1) (2018), pp. 118–145. doi: 10.1080/17513758.2017.1408860
  • R. Xu, X. Tian & S. Zhang, An age-structured within host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions, J. Biol. Dyn., 12(1) (2018), pp. 89–117. doi: 10.1080/17513758.2017.1404646
  • J. Yang, X. Li, and M. Martcheva, Global stability of a DS-DI epidemic model with age of infection, J. Math. Anal. Appl. 385 (2012), pp. 655–671. doi: 10.1016/j.jmaa.2011.06.087
  • J. Yang, Z. Qiu, and X. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng. 11 (2014), pp. 641–665. doi: 10.3934/mbe.2014.11.641