3,943
Views
38
CrossRef citations to date
0
Altmetric
Articles

Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis

ORCID Icon, , &
Pages 90-115 | Received 17 May 2019, Accepted 21 Jan 2020, Published online: 11 Feb 2020

References

  • F.B. Agusto and J.M. Tchuenche, Control strategies for the spread of malaria in humans with variable attractiveness, Math. Popul. Stud. 20(2) (2013), pp. 82–100. doi:10.1080/08898480.2013.777239
  • J.O. Akanni, F.O. Akinpelu, S. Olaniyi, A.T. Oladipo and A.W. Ogunsola, Modelling financial crime population dynamics: optimal control and cost-effectiveness analysis, Int. J. Dynam. Control (2019), pp. 1–14. doi:10.1007/s40435-019-00572-3
  • J.K. Asamoah, F.T. Oduro, E. Bonyah and B. Seidu, Modelling of rabies transmission dynamics using optimal control analysis, J. Appl. Math. 2017 (2017), pp. 1–23. Article ID 2451237. doi:10.1155/2017/2451237
  • S. Athithan and M. Ghosh, Stability analysis and optimal control of a malaria model with larvivorous fish as biological control agent, Appl. Math. Inf. Sci. 9(4) (2015), pp. 1893–1913. doi:10.12785/amis/090428
  • E.A. Bakare and C.R. Nwozo, Effect of control strategies on the optimal control analysis of a human-mosquito model for malaria under the influence of infective immigrants, Int. J. Math. Comput.26(1) (2015), pp. 51–73.
  • H.W. Berhe, O.D. Makinde and D.M. Theuri, Optimal control and cost-effectiveness analysis for dysentery epidemic model, Appl. Math. Inf. Sci. 12(6) (2018), pp. 1183–1195. doi:10.18576/amis/120613
  • K. Blayneh, Y. Cao and H. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst. Ser. B. 11(3) (2009), pp. 587–611. doi:10.3934/dcdsb.2009.11.587
  • C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1(2) (2004), pp. 361–404.
  • N. Chitnis, J.M. Cushing and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math. 67(1) (2006), pp. 24–45.
  • B. Dembele and A. Yakubu, Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira, Discrete Contin. Dyn. Syst. Ser. B. 14(6) (2012), pp. 1831–1840. doi:10.3934/dcdsb.2012.17.1831
  • A.O. Egonmwan and D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, J. Appl. Math. Comput. 59 (2019), pp. 129–162. doi:10.1007/s12190-018-1172-1
  • F. Fatmawati, W. Windarto and L. Hanif, Application of optimal control strategies to HIV-malaria co-infection dynamics, J. Phys. Conf. Ser. 974 (2018), pp. 1–15. doi:10.1088/1742-6596/974/1/012057
  • W.H. Fleming and R.W. Richel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.
  • H.E. Gervas, N.K. Opoku and S. Ibrahim, Mathematical modelling of human African trypanosomiasis using control measures, Comput. Math. Methods Med. 2018 (2018), pp. 1–13. Article ID 5293568. doi:10.1155/2018/5293568
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42(4) (2000), pp. 599–653.
  • R.E. Howes, R.C. Reiner Jr., K.E. Battle, Plasmodium vivax transmission in Africa. PLoS Negl. Trop. Dis. 9(11) (2015), p. e0004222). . .doi:10.1371/journal.pntd.0004222.
  • A. Hugo, O.D. Makinde, S. Kumar and F.F. Chibwana, Optimal control and cost effectiveness analysis for Newcastle disease eco-epidemiological model in Tanzania, J. Biol. Dyn. 11(1) (2017), pp. 190–209. doi:10.1080/17513758.2016.1258093
  • O. Koutou, B. Traoré and B. Sangaré, Mathematical modeling of malaria transmission global dynamics: taking into account the immature stages of the vectors, Adv. Differ. Eq. 2018 (2018), pp. 1–34. doi:10.1186/s13662-018-1671-2
  • A.A. Lashari, M. Ozair, G. Zaman and X. Xuezhi, Global analysis of a host-vector model with infectious force in latent and infected period, Acta Anal. Funct. Appl. 14(4) (2012), pp. 321–329. doi:10.3724/SP.J.1160.2012.00321
  • S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, London, Chapman & Hall, 2007.
  • T.M. Malik, A.A. Alsaleh, A.B. Gumel and M.A. Safi, Optimal strategies for controlling the MERS coronavirus during a mass gathering, Glob. J. Pure Appl. Math. 11(6) (2015), pp. 4831–4865.
  • C. Modnak, Mathematical modelling of an avian influenza: optimal control study for intervention strategies, Appl. Math. Inf. Sci. 11(4) (2017), pp. 1049–1057. doi:10.18576/amis/110411
  • P.M. Mwamtobe, S. Abelman, J.M. Tchuenche and A. Kasambara, Optimal (control of) intervention strategies for malaria epidemic in Karonga district, Malawi, Abst. Appl. Anal. 2014 (2014), pp. 1–20. Article ID 594256. doi:10.1155/2014/594256
  • O.S. Obabiyi and S. Olaniyi, Asymptotic stability of malaria dynamics with vigilant human compartment, Int. J. Appl. Math. 29(1) (2016), pp. 127–144. doi:10.12732/ijam.v29i1.10
  • S.I. Oke, M.B. Matadi and S.S. Xulu, Optimal control analysis of a mathematical model for breast cancer, Math. Comput. Appl. 23(21) (2018), pp. 1–28. doi:10.3390/mca23020021
  • K.O. Okosun, M.A. Khan, E. Bonyah and S.T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, Eur. Phys. J. Plus. 132 (2017), p. 363. doi:10.1140/epjp/i2017-11625-3
  • K.O. Okosun and O.D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Math. Biosci. 258 (2014), pp. 19–32. doi:10.1016/j.mbs.2014.09.008
  • K.O. Okosun, O. Rachid and N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, BioSyst. 111 (2013), pp. 83–101. doi:10.1016/j.biosystems.2012.09.008
  • S. Olaniyi and O.S. Obabiyi, Qualitative analysis of malaria dynamics with nonlinear incidence function, Appl. Math. Sci. 8(78) (2014), pp. 3889–3904. doi:10.12988/ams.2014.45326
  • S. Olaniyi, M.A. Lawal and O.S. Obabiyi, Stability and sensitivity analysis of a deterministic epidemiological model with pseudo-recovery, IAENG Int. J. Appl. Math. 46(2) (2016), pp. 160–167.
  • S. Olaniyi, Dynamics of Zika virus model with nonlinear incidence and optimal control strategies, Appl. Math. Inf. Sci. 12(5) (2018), pp. 969–982. doi:10.18576/amis/120510
  • S. Olaniyi, K.O. Okosun, S.O. Adesanya, Global stability and optimal control analysis of malaria dynamics in the presence of human travelers. Open Infect. Dis. J. 10 (2018), pp. 166–186. doi:10.2174/1874279301810010166
  • M.A. Osman and I.K. Adu, Simple mathematical model for malaria transmission, J. Adv. Math. Comput. Sci. 25(6) (2017), pp. 1–24. doi:10.9734/JAMCS/2017/37843
  • L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.
  • C.R. Rector, S. Chandra and J. Dutta, Principles of Optimization Theory, Narosa Publishing House, New Delhi, 2005.
  • J.P. Romero-Leiton, J.M. Montoya-Aguilar and E. Ibargüen-Mondragón, An optimal control problem applied to malaria disease in Colombia, Appl. Math. Sci. 12(6) (2018), pp. 279–292. doi:10.12988/ams.2018.819
  • R. Ross, The Prevention of Malaria, London, John Murray, 1911.
  • A.K. Srivastav, N.K. Goswami, M. Ghosh and X-Z. Li, Modeling and optimal control analysis of Zika virus with media impact, Int. J. Dyn. Control. 6 (2018), pp. 1673–1689. doi:10.1007/s40435-018-0416-0
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi:10.1016/S0025-5564(02)00108-6
  • WHO, World Malaria Report, Geneva, World Health Organization Press, 2015.
  • WHO, World Malaria Report, Geneva, World Health Organization Press, 2018.