1,494
Views
2
CrossRef citations to date
0
Altmetric
Articles

Age structured discrete-time disease models with demographic population cycles

&
Pages 308-331 | Received 08 Jul 2019, Accepted 27 Jan 2020, Published online: 17 Apr 2020

References

  • L. Allen, Some discrete-time SI, SIR and SIS epidemic models, Math. Biosci. 124 (1994), pp. 83–105. doi: 10.1016/0025-5564(94)90025-6
  • L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Difference Equations Appl. 14(10–11) (2008), pp. 1127–1147. doi: 10.1080/10236190802332308
  • R. Beverton, S. Holt, On the Dynamics of Exploited Fish Populations, Fishery Investigations, Series II, Marine Fisheries, 19 [1-533], Her Majesty's Stationary Office, London, 1957.
  • O.N. Bjørnstad, R.M. Nisbet, and J.M. Fromentin, Trends and cohort resonant effects in age-structured populations, J. Anim. Ecol. 73(6) (2004), pp. 1157–1167. doi: 10.1111/j.0021-8790.2004.00888.x
  • L.W. Botsford and D.E. Wickham, Behavior of age-specific, density-dependent models and the Northern California dungeness crab fishery, J. Fish. Res. Board Can. 35 (1978), pp. 833–843. doi: 10.1139/f78-134
  • L.W. Botsford, M.D. Holland, J.F. Samhouri, J.W. White, and A. Hastings, Importance of age structure in models of the response of upper trophic levels to fishing and climate change, ICES J. Mar. Sci. 68(6) (2011), pp. 1270–1283. doi: 10.1093/icesjms/fsr042
  • F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models, Math. Biosci. Eng. 7 (2010), pp. 1–15. doi: 10.3934/mbe.2010.7.1
  • C. Castillo-Chavez and A.-A. Yakubu, Dispersal, disease and life-history evolution, Math. Biosci. 173 (2001), pp. 35–53. doi: 10.1016/S0025-5564(01)00065-7
  • H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer, Sunderland, MA, 2001.
  • J.M. Cushing, An Introduction to Structured Population Dynamics, Conference Series in Applied Mathematics, vol. 71, SIAM, Philadelphia, 1998.
  • J.M. Cushing and O. Diekmann, The many guises of R0 (a diadactic note), J. Theor. Biol. 404 (2016), pp. 295–302. doi: 10.1016/j.jtbi.2016.06.017
  • M. Devold, B. Krossay, V. Aspehaug, and A. Nylund, Use of RT-PCR for diagnosis of infectious salmon anaemia virus (ISAv) in carrier sea trout Salmo trutta after experimental infection, Dis. Aquat. Organ. 40 (2000), pp. 9–18. doi: 10.3354/dao040009
  • O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365–382. doi: 10.1007/BF00178324
  • S. Elaydi, Discrete Chaos, Second Edition: With Applications in Science and Engineering, 2nd ed., Chapman & Hall/CRC, Boca Raton, 1999.
  • J. Franke and A.-A. Yakubu, Principles of competitive exclusion for discrete populations with reproducing juveniles and adults, Nonlinear Anal. Theory Methods Appl. 30 (1997), pp. 1197–1205. doi: 10.1016/S0362-546X(97)00299-X
  • J. Franke and A.-A. Yakubu, Attenuant cycles in periodically forced discrete-time age structured population models, J. Math. Anal. Appl. 316 (2006), pp. 69–86. doi: 10.1016/j.jmaa.2005.04.061
  • J. Franke and A.-A. Yakubu, Globally attracting attenuant versus resonant cycles in compensatory Leslie models, Math. Biosci. 204 (2006), pp. 1–20. doi: 10.1016/j.mbs.2006.08.016
  • J. Guckenheimer, G. Oster, and A. Ipaktchi, The dynamics of density dependent population models, J. Math. Biol. 4 (1978), pp. 101–147. doi: 10.1007/BF00275980
  • F.S.B. Kibenge, O.N. Garate, G.R. Johnson, R. Arriagada, M.J.T. Kibenge, and D. Wadowska, Isolation and identification of infectious salmon anaemia virus (ISAv) from Coho salmon in Chile, Dis. Aquat. Organ. 45(1) (2001), pp. 9–18. doi: 10.3354/dao045009
  • M. Krkosek, M.A. Lewis, and J.P. Volpe, Transmission dynamics of parasitic sea lice from farm to wild salmon, Proc. R. Soc. B. 272 (2005), pp. 689–696. doi: 10.1098/rspb.2004.3027
  • J.P. La Salle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.
  • S.A. Levin and C.P. Goodyear, Analysis of an age-structured fishery model, J. Math. Biol. 9 (1980), pp. 245–274. doi: 10.1007/BF00276028
  • D.A. Levy and C.C. Wood, Review of proposed mechanisms for sockeye salmon population cycles in the Fraser river, Bull. Math. Biol. 54(2–3) (1992), pp. 241–261. doi: 10.1016/S0092-8240(05)80025-4
  • N. Li and A.-A. Yakubu, A Juvenile-Adult discrete-time production model of exploited fishery systems, Nat. Resource Modeling 25(2) (2012), pp. 273–324. doi: 10.1111/j.1939-7445.2011.00107.x
  • S.H. Marshall, R. Ramírez, A. Labra, M. Carmona, and C. Muñoz, Bona fide evidence for natural vertical transmission of infectious salmon anemia virus in freshwater brood stocks of farmed salmon (Salmo salar) in Chile, J. Virol. 88(11) (2014), pp. 6012–6018. doi: 10.1128/JVI.03670-13
  • R.M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), pp. 459–467. doi: 10.1038/261459a0
  • K.J. Melville and S.G. Griffiths, Absence of vertical transmission of infectious salmon anemia virus (ISAV) from individually infected Atlantic salmon Salmo salar, Dis. Aquat. Organ. 38(3) (1999), pp. 231–234. doi: 10.3354/dao038231
  • E. Milliken and S.S. Pilyugim, A model of infectious salmon anemia virus with viral diffusion between wild and farmed patches, Discrete Cont. Dyn. Sys. B 21(6) (2016), pp. 1869–1893. doi: 10.3934/dcdsb.2016027
  • R.A. Myers, G. Mertz, J.M. Bridson, and M.J. Bradford, Simple dynamics underlie sockeye salmon (Oncorhynchus nerka) cycles, Canad. J. Fish. Aquat. Sci. 55 (1998), pp. 2355–2364. doi: 10.1139/f98-059
  • G.F. Oster, The dynamics of nonlinear models with age structure, in Studies in Mathematical Biology II: Populations and Communities, S.A. Levin, ed., Mathematical Association of America, Washington, D.C., 1978, pp. 411–438.
  • W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954), pp. 559–623. doi: 10.1139/f54-039
  • W.E. Ricker, The historical development, in Fish Population Dynamics, L. A. Gulland, ed., Wiley, London, 1975, pp. 1–26.
  • H.L. Smith, Cooperative systems of differential equations with concave nonlinearities, Nonlinear Anal. Theory Methods Appl. 10(10) (1986), pp. 1037–1052. doi: 10.1016/0362-546X(86)90087-8
  • P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model. 2 (2017), pp. 1–16.
  • P. van den Driessche and A.-A. Yakubu, Demographic population cycles and R0 in discrete-time epidemic models, J. Biol. Dyn. 12(1) (2018), pp. 961–986. DOI: 10.1080/17513758.2018.1537449. doi: 10.1080/17513758.2018.1541104
  • P. van den Driessche and A.-A. Yakubu, Disease extinction versus persistence in discrete-time epidemic models, Bull. Math. Biol. (2018). DOI: 10.1007/s11538-018-0426-2.
  • A. Veprauskas and J.M. Cushing, A juvenile-adult population model: Climate change, cannibalism, reproductive synchrony, and strong Allee effects, J. Biol. Dynam. 11(Sup1) (2017), pp. 1–24. doi: 10.1080/17513758.2015.1131853
  • H.I. Wergeland and R.A. Jakobsen, A salmonid cell line (TO) for production of infectious salmon anaemia virus (ISAv), Dis. Aquat. Organ. 44 (2001), pp. 183–190. doi: 10.3354/dao044183
  • A.-A. Yakubu, Introduction to discrete-time epidemic models, DIMACS Ser. Discrete Math. Theor. Comput. Sci. 75 (2010), pp. 83–109. doi: 10.1090/dimacs/075/04