1,154
Views
25
CrossRef citations to date
0
Altmetric
2019 Guangzhou Workshop

Impulsive releases of sterile mosquitoes and interactive dynamics with time delay

&
Pages 289-307 | Received 17 Dec 2019, Accepted 07 Mar 2020, Published online: 17 Apr 2020

References

  • H.J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol. 24 (1982), pp. 405–416. doi: 10.1007/BF02515585
  • H.J. Barclay, Mathematical models for the use of sterile insects, in Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, V.A. Dyck, J. Hendrichs, and A.S. Robinson, eds., Springer, Heidelberg, 2005, pp. 147–174.
  • H.J. Barclay and M. Mackuer, The sterile insect release method for pest control: A density dependent model, Environ. Entomol. 9 (1980), pp. 810–817. doi: 10.1093/ee/9.6.810
  • G. Briggs, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog. 6(4) (2012), pp. e1000833.
  • L. Cai, S. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math. 74 (2014), pp. 1786–1809. doi: 10.1137/13094102X
  • L. Cai, S. Ai, and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Engi. 15 (2018), pp. 1181–1202. doi: 10.3934/mbe.2018054
  • CDC, Life cycle: The mosquito, 2019. Available at https://www.cdc.gov/dengue/resources/factsheets/mosquitolifecyclefinal.pdf.
  • I.V. Coutinho-Abreu, K.Y. Zhu, and M. Ramalho-Ortigao, Transgesis and paratrans-genesis to control insect-borne diseases: Current status and future challenges, Parasitol. Internat. 58 (2010), pp. 1–8. doi: 10.1016/j.parint.2009.10.002
  • A. Diabate and F. Tripet, Targeting male mosquito mating behaviour for malaria control, Parasit. Vectors 8 (2015), pp. 347. doi: 10.1186/s13071-015-0961-8
  • W. Gao and S. Tang, The effects of impulsive releasing methods of natural enemies on pest control and dynamical complexity, Nonlinear Anal. Hybri. Syst. 5 (2011), pp. 540–553. doi: 10.1016/j.nahs.2010.12.001
  • L. Hu, M. Huang, M. Tang, J. Yu, and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44. doi: 10.1016/j.tpb.2015.09.003
  • M. Huang, M. Tang, and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math. 58 (2015), pp. 77–96. doi: 10.1007/s11425-014-4934-8
  • M. Huang, L. Hu, J. Yu, and B. Zhen, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math. 59 (2016), pp. 1249–1266. doi: 10.1007/s11425-016-5149-y
  • M. Huang, X. Song, and J. Li, Modeling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dynam. 11 (2017), pp. 147–171. doi: 10.1080/17513758.2016.1254286
  • M. Huang, J. Luo, L. Hu, B. Zhen, and J. Yu, Assessing the efficiency of Wolbachia driven aedes mosquito suppression by delay differential equations, J. Theor. Biol. 440 (2018), pp. 1–11. doi: 10.1016/j.jtbi.2017.12.012
  • I. Hurwitz, A. Fieck, A. Read, H. Hillesland, N. Klein, A. Kang, and R. Durvasula, Paratransgenic control of vector borne diseases, Int. J. Biol. Sci. 7 (2011), pp. 1334–1344. doi: 10.7150/ijbs.7.1334
  • J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci. 189 (2004), pp. 39–59. doi: 10.1016/j.mbs.2004.01.001
  • J. Li, Differential equations models for interacting wild and transgenic mosquito populations, J. Biol. Dynam. 2 (2008), pp. 241–258. doi: 10.1080/17513750701779633
  • J. Li, Modeling of mosquitoes with dominant or recessive transgenes and Allee effects, Math. Biosci. Eng. 7 (2010), pp. 101–123.
  • J. Li, Discrete-time models with mosquitoes carrying genetically-modified bacteria, Math. Biosci. 240 (2012), pp. 35–44. doi: 10.1016/j.mbs.2012.05.012
  • Y. Li and X. Liu, An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions, Nonl. Anal. Real World Appl. 37 (2017), pp. 421–432.
  • J. Li, L. Cai, and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dynam. 11(2) (2017), pp. 79–101. doi: 10.1080/17513758.2016.1159740
  • J. Li, M. Han, and J. Yu, Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci.306 (2018), pp. 20–31. doi: 10.1016/j.mbs.2018.10.005
  • J.L. Rasgon, Multi-locus assortment (MLA) for transgene dispersal and elimination in mosquito population, PloS One 4 (2009), pp. e5833. doi: 10.1371/journal.pone.0005833
  • W. Takken, C. Costantini, G. Dolo, A. Hassanali, N. Sagnon, and E. Osir, Mosquito mating behaviour, in Bridging Laboratory and Field Research for Genetic Control of Disease Vectors, B.G.J. Knols and C. Louis, eds., Springer, 2006, pp. 183–188.
  • R.C.A. Thome, H.M. Yang, and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the steril insect technique and insecticide, Math. Biosci. 223 (2010), pp. 12–23. doi: 10.1016/j.mbs.2009.08.009
  • T. Walker, P.H. Johnson, L.A. Moreika, I. Iturbe-Ormaetxe, F.D. Frentiu, C. McMeniman, Y.S. Leong, Y. Dong, J. Axford, P. Kriesner, A.L. Lloyd, S.A. Ritchie, S.L. O'Neill, and A.A. Hoffmann, The wmel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (2011), pp. 450–453. doi: 10.1038/nature10355
  • Wikipedia, Sterile insect technique, 2018. Available at http://en.wikipedia.org/wiki/Sterile/insect/technique.
  • Z. Xi, C.C. Khoo, and S.I. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science 310 (2005), pp. 326–328. doi: 10.1126/science.1117607
  • J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math. 78 (2018), pp. 3168–3187. doi: 10.1137/18M1204917
  • J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dynam.13 (2019), pp. 606–620. doi: 10.1080/17513758.2019.1682201
  • J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Difference Equ. Appl. 25 (2019), pp. 1549–1567. doi: 10.1080/10236198.2019.1669578
  • X. Zhang, S. Tang, and R.A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci. 269 (2015), pp. 164–177. doi: 10.1016/j.mbs.2015.09.004
  • B. Zheng, M. Tang, and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math. 74 (2014), pp. 743–770. doi: 10.1137/13093354X
  • B. Zheng, W. Guo, L. Hu, M. Huang, and J. Yu, Complex Wolbachia infection dynamics in mosquitoes with imperfect maturnal transmission, Math. Biosci. Eng. 15 (2018), pp. 523–541. doi: 10.3934/mbe.2018024
  • B. Zheng, M. Tang, J. Yu, and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 76 (2018), pp. 235–263. doi: 10.1007/s00285-017-1142-5