986
Views
3
CrossRef citations to date
0
Altmetric
2019 Guangzhou Workshop

Modeling the suppression dynamics of Aedes mosquitoes with mating inhomogeneity

&
Pages 656-678 | Received 09 Sep 2019, Accepted 13 Jul 2020, Published online: 04 Aug 2020

References

  • F. Arkin, Dengue researcher faces charges in vaccine fiasco. Science 364(6438) (2019), pp. 320–320.
  • M.P. Atkinson, Z. Su, N. Alphey, L.S. Alphey, P.G. Coleman, and L.M. Wein, Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system, PNAS 104(22) (2007), pp. 9540–9545.
  • F. Baldacchino, F. Caputo, A. Drago, T.A. Della, F. Montarsi, and A. Rizzoli, Control methods against invasive Aedes mosquitoes in Europe: a review, Pest. Manag. Sci. 71 (2015), pp. 1471–1485.
  • S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, J.M. Drake, J.S. Brownstein, A.G. Hoen, O. Sankoh, M.F. Myers, D.B. George, T. Jaenisch, G.R.W. Wint, C.P.Simmons, T.W. Scott, J.J. Farrar, and S.I. Hay, The global distribution and burden of dengue, Nature 496 (2013), pp. 504–507.
  • M.S. Blagrove, C. Arias-Goata, A.B. Failloux, and S.P. Sinkins, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proc. Natl. Acad. Sci. USA 109 (2012), pp. 255–260.
  • L. Cai, S. Ai, and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Eng. 15 (2018), pp. 1181–1202.
  • L. Cai, S. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math. 74(6) (2014), pp. 1786–1809.
  • P. Cailly, A. Tran, T. Balenghien, G. L'Ambert, C. Toty, and P. Ezanno, A climate driven abundance model to assess mosquito control strategies, Ecol. Model. 227 (2012), pp. 7–17.
  • Q. Cheng, Q. Jing, R.C. Spear, J.M. Marshall, Z. Yang, P. Gong, and S.V. Scarpino, Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model, PLoS Negl. Trop. Dis. 10(2) (2016), p. e0004417.
  • D.A. Focks, D.G. Haile, E. Daniels, and G.A. Mount, Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation, J. Med. Entomol. 30(6) (1993), pp. 1018–1028.
  • P.E. Fine, On the dynamics of symbiote-dependent cytoplasmic incompatibility in Culicine mosquitoes, J. Invertebr. Pathol 31(1) (1978), pp. 10–18.
  • J.E. Gentile, S. Rund, and G.R. Madey, Modelling sterile insect technique to control the population of Anopheles gambiae, Malaria J. 14(1) (2015), p. 92.
  • M. Hertig and S.B. Wolbach, Studies on rickettsia-like micro-organisms in insects, J. Med. Res. 44(3) (1924), pp. 329–374.
  • L. Hu, M. Huang, M. Tang, J. Yu, and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44.
  • L. Hu, M. Tang, and Z. Wuet al, The threshold infection level for Wolbachia invasion in random environment. J. Diff. Equ. 266(7) (2019), pp. 4377–4393. Available at https://doi.org/10.1016/j.jde.2018.09.035.
  • L. Hu, M. Huang, M. Tang, J. Yu, and B. Zheng, Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theor. Biol. 462 (2019), pp. 247–258.
  • M. Huang, M. Tang, and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math. 58 (2015), pp. 77–96.
  • M. Huang, J. Yu, L. Hu, and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math. 59 (2016), pp. 1249–1266.
  • M. Huang, J. Lou, L. Hu, B. Zheng, and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol. 440 (2018), pp. 1–11.
  • M. Huang, L. Hu, and B. Zheng, Comparing the efficiency of Wolbachia driven Aedes mosquito suppression strategies, J. Appl. Anal. Comput. 9(1) (2019), pp. 1–20.
  • M. Huang, M. Tang, J. Yu, and B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Bios. Eng. 16(5) (2019), pp. 4741–4757.
  • M. Huang, M. Tang, J. Yu, and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst. 40(6) (2020), pp. 3467–3484.
  • Y. Hui, G. Lin, J. Yu, and J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B (2020). Available at https://doi.org/10.3934/dcdsb.2020118.
  • P. Jia, X. Chen, J. Chen, L. Guo, X. Yu, and Q. Liu, A climate-driven mechanistic population model of Aedes albopictus with diapause, Para. Vect 9 (2016), p. 175.
  • J.L. Kyle and E. Harris, Global spread and persistence of dengue, Annu. Rev. Microbiol. 62 (2008), pp. 71–92.
  • R.M. Lana, M.M. Morais, T.F.M. de Lima, T.G.S. Carneiro, L.M. Stolerman, J.P.C. dos Santos, J.J.C. Corts, A.E. Eiras, C.T. Codeo, and L.A. Moreira, Assessment of a trap based Aedes aegypti surveillance program using mathematical modelling, PLoS One 13(1) (2018), p. e0190673.
  • H. Laven, Cytoplasmic inheritance in culex, Nature 177 (1956), pp. 141–142.
  • J. Li and S. Ai, Impusive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dynam. 14(1) (2020), pp. 289–307.
  • Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, Y. Zhou, L. Yao, G. Yan, X. Chen, and P. Kittayapong, Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis. 8(11) (2014), p. e3301.
  • F. Liu, C. Zhou, and P. Lin, Studies on the population ecology of Aedes albopictus 5. The seasonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Universitatis Sunyatseni 29(2) (1990), pp. 118–122.
  • F. Liu, C. Yao, P. Lin, and C. Zhou, Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Universitatis Sunyatseni 31(3) (1992), pp. 84–93.
  • Y. Liu, Z. Guo, M. Smaily, and L. Wang, A Wolbachia infection model with free boundary, J. Biol. Dynam. 14(1) (2020), pp. 515–542.
  • Z. Liu, Y. Zhang, and Y. Yang, Population dynamics of Aedes (Stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin. 28(3) (1985), pp. 274–280.
  • E.E. Ooi, K.T. Goh, and D.J. Gubler, Dengue prevention and 35 years of vector control in Singapore, Emerg. Infect. Diseases 12 (2006), pp. 887–893.
  • P.A. Ross, M. Turelli, and A.A. Hoffmann, Evolutionary ecology of Wolbachia releases for disease control, Annu. Rev. Genet. 53 (2019), pp. 93–116.
  • H.L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, Vol. 57, 2011.
  • L. Toma, F. Severini, M. Luca, A. Bella, and R. Romi, Seasonal patterns of oviposition and egg hatching rate of Aedes albopiczus in Rome, J. Am. Mosq. Control. Assoc. 19(1) (2003), pp. 19–22.
  • J. Waldock, N.L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides, and P.E. Parham, The role of environment variables on Aedes albopictus biology and Chikungunya epidemiology, Pathogens Global Health. 107 (2013), pp. 224–240.
  • T. Walker, P.H. Johnson, L.A. Moreika, I. Iturbe-Ormaetxe, F.D. Frentiu, C.J. Mcmeniman, Y.S. Leong, Y. Dong, A.L. Lloyd, S.A. Ritchie, S.L. O'Neill, and A.A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (2011), pp. 450–453.
  • E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature 89(1) (2016), pp. 450–451.
  • Y. Wang, X. Liu, C. Li, T. Su, J. Jin, Y. Guo, D. Ren, Z. Yang, and F Meng, A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, China. J. Econ. Entomol. 110(1) (2017), pp. 239–244.
  • WHO, Global strategy for dengue prevention and control 2012–2020. Geneva: World Health Organization, 2012.
  • Z. Xi, C.C. Khoo, and S.L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science 310 (2005), pp. 326–328.
  • J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math. 78(6) (2018), pp. 3168–3187.
  • J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dynam.13(1) (2019), pp. 606–620.
  • J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Equ. 269(7) (2020), pp. 6193–6215.
  • J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Diff. Equ. Appl. 25 (2019), pp. 1549–1567.
  • L. Zhang, L. Tan, H. Ai, C. Lei, and F. Yuan, Laboratory and field studies on the oviposition pattern of Aedes albopictus, Acta Parasitol. Et. Med. Entomol. Sin. 16 (2009), pp. 219–223.
  • B. Zheng, M. Tang, and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math. 74 (2014), pp. 743–770.
  • B. Zheng and J. Yu, Characterization of Wolbachia enhancing domain in mosquitoes with imperfect maternal transmission, J. Biol. Dynam. 12(1) (2018), pp. 596–610.
  • B. Zheng, J. Yu, Z. Xi, and M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model. 387 (2018), pp. 38–48.
  • X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A.G. Parker, J.R.L. Gilles, K. Bourtzis, J. Bouyer, M. Tang, B. Zheng, J. Yu, J. Liu, J. Zhuang, Z. Hu, M. Zhang, J. Gong, X. Hong, Z. Zhang, L. Lin, Q. Liu, Z. Hu, Z. Wu, L.A. Baton, A.A. Hoffmann, and Z. Xi, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature 572 (2019), pp. 56–61.
  • Z. Zhong and G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen University Medical Sci. 9(3) (1988), pp. 35–39.
  • Z. Zhong and G. He, The life and fertility table of Aedes albopictus under different temperatures, Acta Entom. Sinica 33(1) (1990), pp. 64–70.