962
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A bifurcation theorem for Darwinian matrix models and an application to the evolution of reproductive life-history strategies

Pages S190-S213 | Received 12 May 2020, Accepted 20 Nov 2020, Published online: 09 Dec 2020

References

  • T.G. Benton. and A. Grant, Optimal reproductive effort in stochastic, density dependent environments, Evolution 53 (1999), pp. 677–688.
  • A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics. SIAM, Philadelphia, 1994.
  • J.S. Brown and D.L. Venable, Evolutionary ecology of seed-banlc annuals in temporally varying environments, Amer. Nat. 127 (1986), pp. 31–47.
  • M.G. Bulmer, Selection of iteroparity in a variable environment, Amer. Nat. 126 (1985), pp. 63–71.
  • B. Charlesworth, Evolution in Age-structured Populations, 2nd ed., Cambridge University Press, New York, 1994.
  • L.C. Cole, The population consequences of life history phenomena, Quar. Rev. Biol 29 (1954), pp. 103–137.
  • F. Courchamp, L. Berec, and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.
  • E.L. Charnov and W.M. Schaffer, Life-History consequences of natural selection: Cole's result revisited, Amer. Nat. 107(958) (1973), pp. 791–793.
  • J.M. Cushing, A strong ergodic theorem for some nonlinear matrix models for structured population growth, Nat. Resource Model. 3(3) (1989), pp. 331–357.
  • J.M. Cushing, A bifurcation theorem for Darwinian matrix models, Nonlinear Studies 17(1) (2010), pp. 1–13.
  • J.M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations, J. Biol. Dyn. 8 (2014), pp. 57–73.
  • J.M. Cushing, One dimensional maps as population and evolutionary dynamic models, in Applied Analysis in Biological and Physical Sciences, J. M. Cushing, M. Saleem, H. M. Srivastava, M. A. Khan, M. Merajuddin, eds., Springer Proceedings in Mathematics & Statistics, Vol. 186, Springer, 2016.
  • J.M. Cushing, Discrete time Darwinian dynamics and semelparity versus iteroparity, Math. Biosci. Engin. 16(4) (2019), pp. 1815–1835. doi:10.3934/mbe.2019088.
  • J.M. Cushing, Difference equations as models of evolutionary population dynamics, J. Biol. Dyn. 13 (2019), pp. 103–127. doi:10.1080/17513758.2019.1574034.
  • J.M. Cushing and K. Stefanko, A Darwinian dynamic model for the evolution of post-reproductive survival, under review.
  • J.M.Cushing, A.P. Farrell, A bifurcation theorem for nonlinear matrix models of population dynamics, J. Differ. Equ. Appl. 26 (2019), pp. 25–44. doi:10.1080/10236198.2019.1699916.
  • J.M. Cushing, F. Martins, A.A. Pinto, and A. Veprauskas, A bifurcation theorem for evolutionary matrix models with multiple traits, J. Math. Biol. 75(1) (2017), pp. 491–520. doi:10.1007/s00285-016-1091-4.
  • S. Ellner, ESS germination strategies in randomly varying environments. 1. logistic-type models, Theor. Populat. Biol. 28 (1985), pp. 50–79.
  • M.E.K. Evans, Life history evolution in evening primroses (Oenothera): Cole's paradox revisited, Ph.D. diss., University of Arizona, 2003.
  • A.P. Farrell, How the concavity of reproductive/survival trade-off impacts the evolution of life history strategies, to appear in J. Biol. Dyn..
  • T. Flatt and A. Heyland, Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-offs, Oxford University Press, Oxford, 2011.
  • D. Goodman, Risk spreading as an adaptive strategy in iteroparous life histories, Theor. Populat. Biol. 25 (1984), pp. 1–20.
  • P.W. Hughes, Between semelparity and iteroparity: empirical evidence for a continuum of modes of parity, Ecol. Evol. 7 (2017), pp. 8232–8261.
  • J. Jacobs, Cooperation, optimal density and low density thresholds: yet another modification of the logistic model, Oecologia 64 (1984), pp. 389–395.
  • É Kisdi, Evolutionary branching under asymmetric competition, J. Theor. Biol. 197 (1999), pp. 149–162.
  • C.H. Martin and P.C. Wainwright, Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild, Science 339(6116) (2013), pp. 208–211.
  • B.J. McGill and J.S. Brown, Evolutionary game theory and adaptive dynamics of continuous traits, Ann. Rev. Ecolog. Evol. Syst. 38 (2007), pp. 403–435.
  • E.P. Meissen, K.R. Salau, and J.M. Cushing, A global bifurcation theorem for Darwinian matrix models, J. Differ. Equ. Appl. 22(8) (2016), pp. 1114–1136.
  • D. Roff, The Evolution of Life Histories: Theory and Analysis, Chapman & Hall, New York, 1992.
  • D.A. Roff, The Evolution of Life Histories, Sinauer Associates, Sunderland, MA, 2002.
  • W.M. Schaffer, Selection for optimal life histories: the effects of age structure, Ecology 55 (1974), pp. 291–303.
  • W.M. Schaffer and M.L. Rosenzweig, Selection for optimal life histories. II: Multiple equilibria and the evolution of alternative reproductive strategies, Ecology 58(1) (1977), pp. 60–72.
  • S.C. Stearns, The Evolution of Life Histories, Oxford University Press, Oxford, 2004.
  • T. Takada, Evolution of semelparous and iteroparous perennial plants: comparison between the density-independent and density-dependent dynamics, J. Theor. Biol. 173 (1995), pp. 51–60.
  • T. Takada and H. Nakajima, An analysis of life history evolution in terms of the density-dependent Lefkovitch matrix model, Math. Biosci. 112 (1992), pp. 155–176.
  • S. Tuljapurkar, Delayed reproduction and fitness in variable environments, Proc. Nat. Acad. Sci. 87 (1990), pp. 1139–1143.
  • S. Tuljapurkar, Stochastic demography and life histories, in Frontiers in Mathematical Biology, S. A. Levin, ed., Lecture Notes in Biomathematics, Vol. 97, Springer Verlag, Berlin, 1997 (reprinted 1994).
  • A. Veprauskas, On the dynamic dichotomy between positive equilibria and synchronous 2-cycles in matrix population models, Ph.D. dissertation, University of Arizona, 2016.
  • A. Veprauskas and J.M. Cushing, Evolutionary dynamics of a multi-trait semelparous model, Discr. Contin. Dyn. Syst. Ser. B 21(2) (2016), pp. 655–676.
  • T.L. Vincent and J.S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, Cambridge, 2005.
  • P. Wiener and S. Tuljapurkar, Migration in variable environments; exploring life history evolution using structured population models, J. Theor. Biol. 166 (1994), pp. 75–90.