1,205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mathematical assessment of the impact of cohort vaccination on pneumococcal carriage and serotype replacement

ORCID Icon, , &
Pages S214-S247 | Received 30 Jun 2020, Accepted 20 Jan 2021, Published online: 17 Feb 2021

References

  • E.M.C. D'Agata, G.F. Webb, and J. Pressley, Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant staphylococcus aureus strains in the hospital setting, Math. Model. Nat. Phenom. 5(3), pp. 76–93.
  • R. Austrian, Some aspects of the pnuemococcal carrier state, J. Antimicrob. Chemother. 18(Suppl A) (1986), pp. 35–45.
  • R.M. Anderson and R.M. May, Infectious Diseases of Humans, Oxford University Press, New York, 1991.
  • K. Atkins, E.I. Lafferty, S.R. Deeny, N.G. Davies, J.V. Robotham, and M. Jit, Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance, Lancet Infect. Dis. 18 (2018), pp. e204–13.
  • K. Auranen, J. Mehtala, A. Tanskanen, and M.S. Kaltoft, Between-strain competition in acquisition and clearance of pneumococcal carriage: Epidemiologic evidence from a longitudinal study of day-care children, Am. J. Epidemiol. 171(2) (2010), pp. 169–176.
  • E. Balsells, et al. The relative invasive disease potential of Streptococcus pneumoniae among children after PCV introduction: A systematic review and meta-analysis, J. Infect. 77 (2018), pp. 368–378.
  • S.D. Brugger, L.J. Hataway, and K. Mühlemann, Detection of streptococcus pneumoniae strain cocolonization in the nasopharynx, J. Clin. Microbiol. 47 (2009), pp. 1750–1756.
  • C. Bottomley, A. Roca, P.C. Hill, B. Greenwood, and V. Isham, A mathematical model of serotype replacement in pneumococcal carriage following vacciation, J. R. Soc. Interfact. 10 (2013), pp. 20130786. http://dx.doi.org/10.1098/rsif.2013.0786.
  • Centers for Disease Control and Prevention. Vital Statistics Rapid Release: Births: Provisional Data for 2018. Available at https://www.cdc.gov/nchs/data/vsrr/vsrr-007-508.pdf (accessed Jan 3 2020).
  • Centers for Disease Control and Prevention. National Center for Health Statistics: Mortality in the United States, preprint (2017). Available at https://www.cdc.gov/nchs/products/databriefs/db328.htm (accessed Jan 2 2020).
  • Centers for Disease Control and Prevention. 2017. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Streptococcus pneumoniae, preprint (2017). Available at via the internet: http://www.cdc.gov/abcs/reportsfindings/survreports/spneu17.pdf (accessed May 14 2019).
  • Centers for Disease Control and Prevention. ChildVaxView: 2002 through 2017 Childhood Pneumococcal Conjugate Vaccine (PCV) Coverage Trend Report, Available at https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data-reports/pcv/trend/index.html (accessed Jan 7 2020).
  • S. Cobey and M. Lipsitch, Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes, Science 335 (2012), pp. 1376–1380.
  • Y.H. Choi, M. Jit, N. Gay, N. Andrews, P.A. Waight, A. Melegaro, R. Georege, and E. Miller, 7-Valent pneumococcal conjugate vaccination in England and Wales: Is it still beneficial despite high levels of serotype replacement?, PLoS One 6(10) (2011), pp. e26190. doi:10.1371/journal.pone.0026190.
  • Y.H. Choi, M. Jit, S. Flasche, N. Gay, and E. Miller, Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales, PLoS One 7(7) (2012), pp. e39927. doi:10.1371/journal.pone.0039927..
  • A.P. Desai, et al. Decline in pneumococcal nasopharyngeal carriage of vaccine serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in children in Atlanta Georgia, Pediatr. Infect. Dis. J. 34 (2015), pp. 1168–1174.
  • P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations, J. Math. Biol.28 (1990), pp. 365–382.
  • E. Delgleize, O. Leeuwenkamp, E. Theodorou, and N. Van de Velde, Cost effectiveness analysis of routine pneumococcal vaccination in the UK: A comparison of the PHiD-CV vaccine and the PCV-13 vaccine using a Markov model, BMJ Open 6 (2016), pp. e010776. doi:10.1136/bmjopen-2015-010776..
  • E.H. Elbasha and A. Galvani, Vaccination against multiple HPV types, Math. Biosci. 197 (2005), pp. 88–117.
  • S. Flasche, W.J. Edmunds, E. Miller, D. Goldblatt, C. Robertson, and Y.H. Choi, The impact of specific and non-specific immunity on the ecology of Streptococcus pneumoniae and the implications for vaccination, Proc. R. Soc. B 280 (2013), pp. 20131939. http://dx.doi.org/10.1098/rspb.2013.1939.
  • G. Falkenhorst, C. Remschmidt, T. Harder, O. Wichmann, S. Glodny, E. Hummers-Pradier, T. Ledig, and C. Bogdan, Background paper to the updated pneumococcal vaccination recommendation for older adults in Germany, Bundesgesundheitsblatt 59 (2016), pp. 1623–1657. DOI 10.1007/s00103-016-2466-9.
  • S. Flasche, J. Ojal, O.L.P de Waroux, M. Otiende, K.L. O'Brien, M. Kiti, D.J. Nokes, W.J. Edmunds, and J.A.G. Scott, Assessing the efficiency of catch-up campaigns for the introduction of pneumococcal conjugate vaccine: A modelling study based on data from PCV10 introduction in Kilifi, Kenya, BMC Med. 15(1) (2017), pp. 113.
  • E. Gjini, Geographic variation in pneumococcal vaccine efficacy estimated from dynamic modeling of epidemiological data post-PCV7, Sci. Rep. 7 (2017), pp. 3049. DOI:10.1038/s41598-017-02955-y.
  • L.R. Grant, et al. Impact of the 13-valent pneumococcal conjugate vaccine on pneumococcal carriage among American indians, Pediatr. Infect. Dis. J. 35(8) (2016), pp. 907–914.
  • E. Gjini and M.G.M. Gomes, Expanding vaccine efficacy estimation with dynamic models fitted to cross-sectional prevalence data post-licensure', Epidemics 14 (2016), pp. 71–82.
  • S.M. Granat, J. Ollgren, E. Herva, Z. Mia, K. Auranen, and P.H. Mäkelä, Epidemiological evidence for serotype-independent acquired immunity to pneumococcal carriage, J. Infect. Dis. 200 (2009), pp. 99–106.
  • E. Gjini, C. Valente, R. Sá-Leão, and M.G.M. Gomes, How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems, J. Theor. Biol. 388 (2016), pp. 50–60.
  • M. Gaivão, F. Dionisio, and E. Gjini, Transmission fitness in co-colonization and the persistence of bacterial pathogens, Bull Math Biol 79 (2017), pp. 2068–2087.
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42(4) (2000), pp. 599–653.
  • W.P. Hausdorff and W.P. Hanage, Interim results of an ecological experiment – conjugate vaccination against the pneumococcus and serotype replacement, Hum. Vaccin Immunother. 12 (2016), pp. 358–74.
  • M. Habib, B.D. Porter, and C. Satzke, Capsular serotyping of streptococcus pneumoniae using the quellung reaction, J. Vis. Exp. JoVE (2014). doi:10.3791/51208.
  • M. Iannelli, M. Martcheva, and X. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination, Math. Biosci. 195 (2005), pp. 23–46.
  • M. Lipsitch, Vaccination against colonizing bacteria with multiple serotypes, Proc. Natl. Acad. Sci. USA 94 (1997), pp. 6571–6576.
  • M. Lipsitch, Bacterial vaccines and serotype replacement: Lessons from Haemophilus influenzae and prospects for Streptococcus pneumoniae, Emerg. Infect. Dis. 5(3) (1999), pp. 336–45.
  • M. Lipsitch, et al. Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal Serotypes in Kenya with a Markov transition model, Epidemiology 23(4) (2012), pp. 510.
  • A. Lochen and R.M. Anderson, Dynamic transmission models and economic evaluations of pneumococcal conjugate vaccines: A quality appraisal and limitations, Clin. Microbiol. Inf. (2019). https://doi.org/10.1016/j.cmi.2019.04.026.
  • C.D.S. Lefebvre, A. Terlinden, and B. Standaert, Dissecting the indirect effects caused by vaccines into the basic elements, Hum. Vaccin. Immunother. 11(9) (2015), pp. 2142–2157. doi:10.1080/21645515.2015.1052196.
  • I.J. Myung, Tutorial on maximum likelihood estimation, J. Math. Psychol. 47 (2003), pp. 90–100.
  • A. Melegaro, Y. Choi, R. Pebody, and N. Gay, Pneumococcal carriage in United Kingdom families: Estimating serotype-specific transmission parameters from longitudinal data, Am. J. Epidemiol. 166 (2007), pp. 228–235.
  • A. Melegaro, Y.H. Choi, R. George, W.J. Edmunds, E. Miller, and N.J. Gay, Dynamic models of pneumococcal carriage and the impact of the heptavalent pneumococcal conjugate vaccine on invasive pneumococcal disease, BMC Infect. Dis. 10 (2010), pp. 90.
  • E. Miller, N.J. Andrews, P.A. Waight, M.P.E. Slack, and R.C. George, Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: An observational cohort study, Lancet Infect. Dis. 11 (2011), pp. 760–68. doi:10.1016/S1473-3099(11)70090-1.
  • J. Mehtälä, M. Antonio, M.S. Kaltoft, K.L. O'Brien, and K. Auranen, Competition between streptococcus pneumoniae strains: Implications for vaccine-induced replacement in colonization and disease, Epidemiology 24(4) (2013), pp. 522–29.
  • G. Masala, M. Lipsitch, C. Bottomley, and S. Flasche, Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination, J. R. Soc. Interface 14 (2017), pp. 20170620. http://dx.doi.org/10.1098/rsif.2017.0620.
  • A. Matanock, G. Lee, R. Gierke, M. Kobayashi, A. Leidner, and T. Pilishvili, Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: Updated recommendations of the advisory committee on immunization practices, Morb. Mortal. Wkly. Rep. 68 (2019), pp. 1069–1075.
  • Merck Sharp & Dohme Corp. A Study to Evaluate the Safety, Tolerability, and Immunogenicity of V114 Followed by PNEUMOVAXTM23 in Healthy Adults 50 Years of Age or Older (V114-016/PNEU-PATH), preprint (2018). Available at https://clinicaltrials.gov/ct2/show/NCT03480763?term=NCT03480763&rank=1.
  • Merck Sharp & Dohme Corp. A Study to Evaluate the Safety, Tolerability, and Immunogenicity of V114 Followed by PNEUMOVAXTM23 in Adults Infected With Human Immunodeficiency Virus (HIV) (V114-018/PNEU-WAY), preprint (2019). Available at https://clinicaltrials.gov/ct2/show/NCT03480802.
  • Pfizer. Trial to Evaluate the Safety and Immunogenicity of a 20-valent Pneumococcal Conjugate Vaccine in Pneumococcal Vaccine-naive Adults, preprint (2019). Available at https://clinicaltrials.gov/ct2/show/NCT03760146?term=NCT03760146&rank=1.
  • E. Numminen, L. Cheng, M. Gyllenberg, and J. Corander, Estimating the transmission dynamics of Streptococcus pneumoniae from strain prevalence data, Biometrics 69(3) (2013), pp. 748–57.
  • K. Okuneye and A.B. Gumel, Analysis of a temperature and rainfall-dependent model for malaria transmission dynamics, Math. Biosci. 287 (2017), pp. 72–92.
  • K. Prem, A.R. Cook, and M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol. 13(9) (2017), pp. e1005697. https://doi.org/10.1371/journal.pcbi.1005697.
  • H. Rinta-Kokko, R. Dagan, N. Givon-Lavi, and K. Auranen, Estimation of vaccine efficacy against acquisition of pneumococcal carriage, Vaccine 27 (2009), pp. 3831–3837.
  • H.L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, American Math. Soc., Providence, (1995).
  • S.J. Snedecor, D.R. Strutton, V. Ciuryla, E.J. Schwartz, and M.F. Botteman, Transmission-dynamic model to capture the indirect effects of infant vaccination with prevnar (7-valent pneumococcal conjugate vaccine (pCV7) in older populations, Vaccine 27 (2009), pp. 4694–4703.
  • K.L. Sutton, H.T. Banks, and C. Castillo-Chavez, Public vaccination policy using an age-structured model of pneumococcal infection dynamics, J. Biol. Dyn. 4(2) (2010), pp. 176–195.
  • B. Simell, K. Auranen, H. Käyhty, D. Goldblatt, R. Dagan, and K.L. O'Brien, The fundamental link between pneumococcal carriage and disease, Expert Rev. Vaccines 11(7) (2012), pp. 841–855.doi:10.1586/erv.12.53.
  • A.M.C. Sartori, L.M. Rozman, T.C. Decimoni, R. Leandro, H.M.D. Novaes, and P.C. de Soárez, A systematic review of health economic evaluations of vaccines in Brazil, Hum. Vaccines Immunother.13(6) (2017), pp. 1454–1465.
  • L. Temime, D. Guillemot, and P.Y. Boëlle, Short- and long-term effects of pneumococcal conjugate vaccination of children penicillin resistance, Antimicrob. Agents Chemother. 48(6) (2004), pp. 2206–2213.
  • L. Temime, P.Y. Boëlle, AlJ. Valleron, and D. Guillemot, Penicillin-resistant pneumococcal meningitis: High antibiotic exposure impedes new vaccine protection, Epidemiol. Infect. 133 (2005), pp. 493–501.
  • P. Turner, J. Hinds, C. Turner, A. Jankhot, K. Gould, S.D. Bentley, F. Nosten, and D. Goldblatt, Improved detection of nasopharyngeal cocolonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray, J. Clin. Microbiol. 49 (2011), pp. 1784–1789.
  • D. Thorrington, N. Andrews, J. Stowe, E. Miller, and A.J. van Hoek, Elucidating the impact of the pneumococcal conjugate vaccine programme on pneumonia, sepsis and otitis media hospital admissions in England using a composite control, BMC Med. 16 (2018), pp. 13.
  • T. van Effelterre, M.R. Moore, F. Fierens, C.G. Whitney, L. White, S.I. Pelton, and W.P. Hausdorff, A dynamic model of pneumococcal infection in the United States: Implications for prevention through vaccination, (2010).
  • A.J. van Hoek, N.J. Andrews, P.A. Waight, R.C. George, and E. Miller, Effect of serotype on focus and mortality of invasive pneumococcal disease: Coverage of different vaccines and insight into non-vaccine serotypes, PLoS One 7(7) (2012), pp. e39150. doi:10.1371/journal.pone.0039150.
  • D. Weinberger, R. Malley, and M. Lipsitch, Serotype replacement in disease after pneumococcal vaccination, Lancet 378 (2011), pp. 1962–1973. DOI:10.1016/S0140-6736(10)62225-8.
  • D.B. Wu, C. Chang, Y. Huang, Y. Wen, C. Wu, and C.S. Fann, Cost-effectiveness analysis of pneumococcal conjugate vaccine in Taiwan: A transmission dynamic modeling approach, Value Health 15 (2012), pp. S15–S19.
  • A.L. Wyllie, M.L.J.N. Chu, M.H.B. Schellens, J.V.E. Gastelaars, M.D. Jansen, A. van der Ende, D.Bogaert, E.A.M. Sanders, and K. Trzciński, Streptococcus pneumoniae in saliva of dutch primary school children, PloS One 9(7) (2014), pp. e102045.
  • B. Wahl, K.L. O'Brien, A. Greenbaum, A. Majumder, L. Liu, and Y. Chu, et al. Burden of streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000-15, Lancet Glob. Health 6 (2018), pp. e744–e757.
  • M. Wasserman, M.G. Palacios, A.G. Grajales, F.B. Baez-Revueltas, M. Wilson, C. McDade, and R.Farkouh, Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico, Hum. Vaccines Immunother. 15(3) (2018), pp. 560–569. doi:10.1080/21645515.2018.1516491.