1,353
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response

, &
Pages 367-394 | Received 20 Nov 2020, Accepted 12 Jun 2021, Published online: 12 Jul 2021

References

  • P. Aavani and L.J.S. Allen, The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection, Appl. Math. Model. 75 (2019), pp. 210–222.
  • S. Ali, A.A. Raina, J. Iqbal, and R. Mathur, Mathematical modeling and stability analysis of HIV/AIDS-TB co-infection, Palest. J. Math. 8 (2019), pp. 380–391.
  • D. Biswas and S. Palb, Stability analysis of a non-linear HIV/AIDS epidemic model with vaccination and antiretroviral therapy, Int. J. Adv. Appl. Math. Mech. 5 (2017), pp. 41–50.
  • B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl. 385 (2012), pp. 709–720.
  • C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1 (2004), pp. 361–404.
  • Q. Chen, Z. Teng, L. Wang, and H. Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlinear Dyn. 71 (2013), pp. 55–73.
  • D. Ebert, C.D. Zschokke-Rohringer, and H.J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphania magna, Oecologia 122 (2000), pp. 200–209.
  • A.M. Elaiw and A.D. Al Agha, Stability of a general HIV-1 reaction-diffusion model with multiple delays and immune response, Phys. A 536 (2019), pp. 122593.
  • N.R. Faria, A. Rambaut, M.A. Suchard, G. Baele, T. Bedford, M.J. Ward, A.J. Tatem, J.D. Sousa, N. Arinaminpathy, J. Pépin, D. Posada, M. Peeters, O.G. Pybus, and P. Lemey, The early spread and epidemic ignition of HIV-1 in human populations, Science 346 (2014), pp. 56–61.
  • R.C. Gallo and L. Montagnier, The discovery of HIV as the cause of AIDS, N. Engl. J. Med. 349 (2003), pp. 2283–2285.
  • M. Hesaaraki and M. Sabzevari, Global properties for an HIV-1 infection model including an eclipse stage of infected cells and saturation infection, Differ. Equ. Control Process. 4 (2013), pp. 67–83.
  • A.L. Hill, D.I.S. Rosenbloom, M.A. Nowak, and R.F. Siliciano, Insight into treatment of HIV infection from viral dynamics models, Immunol. Rev. 285 (2018), pp. 9–25.
  • Z. Hu, W. Pang, F. Liao, and W. Ma, Analysis of a CD4 + T cell viral infection model with a class of saturated infection rate, Discrete Contin. Dyn. Syst. Ser. B. 19 (2014), pp. 735–745.
  • G. Kapitanov, C. Alvey, K. Vogt-Geisse, and Z. Feng, An age-structured model for the coupled dynamics of HIV and HSV-2, Math. Biosci. Eng. 12 (2015), pp. 803–840.
  • X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl. 426 (2015), pp. 563–584.
  • J.P. LaSalle and S. Lefschetz, Stability by Lyapunov's Direct Method with Application, Academic Press, New York, 1961.
  • B. Li, Y. Chen, X. Lu, and S. Liu, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng. 13 (2016), pp. 135–157.
  • C. Lv, L. Huang, and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), pp. 121–127.
  • N.J. Malunguza, S.D. Hove-Musekwa, S. Dube, and Z. Mukandavire, Dynamical properties and thresholds of an HIV model with super-infection, Math. Med. Biol. 34 (2017), pp. 493–522.
  • M. Maziane, K. Hattaf, and N. Yousfi, Global stability of a class of HIV infection models with cure of infected cells in eclipse stage and CTL immune response, Int. J. Dynam. Control 5 (2017), pp. 1035–1045.
  • P. Ngina, R.W. Mbogo, and L.S. Luboobi, HIV drug resistance: insights from mathematical modelling, Appl. Math. Model. 75 (2019), pp. 141–161.
  • M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses, Science272 (1996), pp. 74–79.
  • E. Numfor, Optimal treatment in a multi-strain within-host model of HIV with age structure, J. Math. Anal. Appl. 480(2) (2019), pp. 123410.
  • A. Nwankwo and D. Okuonghae, Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis, Bull. Math. Biol. 80 (2018), pp. 437–492.
  • A.S. Perelson and R.M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biol. 11 (2013), pp. 123. DOI:https://doi.org/10.1186/1741-7007-11-96.
  • L. Rong, M.A. Gilchrist, Z. Feng, and A.S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility, J. Theoret. Biol. 247 (2007), pp. 804–818.
  • J.B. Sacha, C. Chung, E.G. Rakasz, S.P. Spencer, A.K. Jonas, A.T. Bean, W. Lee, B.J. Burwitz, J.J.Stephany, J.T. Loffredo, D.B. Allison, S. Adnan, A. Hoji, N.A. Wilson, T.C. Friedrich, J.D. Lifson, O.O.Yang, and D.I. Watkins, Gag-specific CD8 + T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression, J. Immunol. 178(5) (2007), pp. 2746–2754.
  • S.K. Sahani and Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Syst. 26 (2018), pp. 421–454.
  • M. Shen, Y. Xiao, and L. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci. 263 (2015), pp. 37–50.
  • X. Song and A.U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. 329 (2007), pp. 281–297.
  • J. Sotomayor, Generic Bifurcations of Dynamical Systems, Dynamical systems, Academic Press, 1973.
  • N. Tarfulea, Drug therapy model with time delays for HIV infection with virus-to-cell and cell-to-cell transmissions, J. Appl. Math. Comput. 59 (2019), pp. 677–691.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • World Health Organization, HIV/AIDS, software. Available at https://www.who.int/news-room/fact-sheets/detail/hiv-aids.