1,152
Views
2
CrossRef citations to date
0
Altmetric
Tianyuan Hengyang Workshop 2020

Existence and stability of two periodic solutions for an interactive wild and sterile mosquitoes model

, &
Pages 277-293 | Received 27 Aug 2021, Accepted 28 Nov 2021, Published online: 10 Jan 2022

References

  • S. Ai, J. Li, J. Yu and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B, doi: 10.3934/dcdsb.2021172.
  • L. Alphey, M. Benedict and R. Bellini, et al. Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Dis. 10 (2010), pp. 295–311.
  • H. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol. 24 (1982), pp. 405–416.
  • H. Barclay, Mathematical models for the use of sterile insects, In: Sterile insect technique: Principles and practice in area-wide integrated pest management, V. Dyck, J. Hendrichs and A. Robinson, eds., Springer, Netherlands, 2005, pp. 147–174.
  • L. Cai, S. Ai and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Eng. 15 (2018), pp. 1181–1202.
  • L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math. 74 (2014), pp. 1786–1809.
  • CDC, Life cycle: The mosquito, Preprint 2019, Available from: https://www.cdc.gov/dengue/resources/factsheets/mosquitolifecyclefinal.pdf.
  • K. Fister, M. McCarthy, S. Oppenheimer and C. Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci. 244 (2013), pp. 201–212.
  • Z. Guo, H. Guo and Y. Chen, Traveling wavefronts of a delayed temporally discrete reaction-diffusion equation, J. Math. Anal. Appl. 496 (2021), pp. 124787.
  • M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd ed., Academic Press, Orlando, 2003.
  • A. Hoffmann, B. Montgomery and J. Popovici, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476 (2011), pp. 454–457.
  • L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44.
  • L. Hu, M. Tang, Z. Wu, Z. Xi and J. Yu, The threshold infection level for wolbachia invasion in random environment, J. Differ. Equ. 266 (2019), pp. 4377–4393.
  • M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol. 440 (2018), pp. 1–11.
  • M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by recation-diffusion equations, Sci. China Math 58 (2015), pp. 77–96.
  • M. Huang, M. Tang, J. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst. 40 (2020), pp. 3467–3484.
  • M. Huang, J. Yu, L. Hu and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math. 59 (2016), pp. 1249–1266.
  • Y. Hui, G. Lin, J. Yu and J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B 25 (2020), pp. 4659–4676.
  • I. Iturbe-Ormaetxe, T. Walker and S. O'Neill. Wolbachia and the biological control of mosquito-borne disease, EMBO Rep. 12 (2011), pp. 508–518.
  • J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn. 11 (2017), pp. 316–333.
  • G. Lin and Y. Hui, Stability analysis in a mosquito population suppression model, J. Biol. Dyn. 14 (2020), pp. 578–589.
  • Y. Liu, Z. Guo, M. Smaily and L. Wang, A Wolbachia infection model with free boundary, J. Biol. Dyn. 14 (2020), pp. 515–542.
  • Y. Liu, F. Jiao and L. Hu, Modeling mosquito population control by a coupled system, J. Math. Anal. Appl. 506 (2022), pp. 125671.
  • F. Liu, C. Yao, P. Lin and C. Zhou, Studies on life table of the natural population of Aedes albopictus, Acta Sci. Nat. Univ. Sunyat. 31 (1992), pp. 84–93.
  • Y. Shi and J. Yu, Wolbachia infection enhancing and decaying domains in mosquito population based on discrete models, J. Biol. Dyn. 14 (2020), pp. 679–695.
  • Y. Shi and B. Zheng, Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios, J. Biol. Dyn., 2021, doi: 10.1080/17513758.2021.1977400.
  • C. Stone, Transient population dynamics of mosquitoes during sterile male releases: Modelling mating behaviour and perturbations of life history parameters, PLoS ONE 8 (2013), pp. e76228. doi: 10.1371/journal.pone.0076228.
  • E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature 533 (2016), pp. 450–451.
  • S. White, P. Rohani and S. Sait, Modelling pulsed releases for sterile insect techniques: Fitness costs of sterile and transgenic males and the effects on mosquito dynamics, J. Appl. Ecol. 47 (2010), pp. 1329–1339.
  • World Health Organization, Dengue and severe dengue, Preprint 2021, Available from: http://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
  • J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math. 78 (2018), pp. 3168–3187.
  • J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ. 269 (2020), pp. 10395–10415.
  • J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn. 13 (2019), pp. 606–620.
  • J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equ. 269 (2020), pp. 6193–6215.
  • J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Differ. Equ. Appl. 25 (2019), pp. 1549–1567.
  • B. Zheng, J. Li and J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., (2021), doi: 10.1007/s11425-021-1891-7.
  • B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math. 74 (2014), pp. 743–770.
  • B. Zheng, M. Tang, J. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 76 (2018), pp. 235–263.
  • B. Zheng and J. Yu, Characterization of Wolbachia enhancing domain in mosquitoes with imperfect maternal transmission, J. Biol. Dyn. 12 (2018), pp. 596–610.
  • B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal. 11 (2021), pp. 212–224.
  • B. Zheng, J. Yu and J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math. 81 (2021), pp. 718–740.
  • X. Zheng, D. Zhang and Y. Li, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature 572 (2019), pp. 56–61.
  • Z. Zhu, B. Zheng, Y. Shi, R. Yan and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Accepted.