150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of spreading speeds and travelling waves for the lattice pioneer-climax competition system

&
Article: 2365792 | Received 20 Dec 2023, Accepted 21 May 2024, Published online: 11 Jun 2024

References

  • C Azar, K Lindgren, J Holmberg. Constant quota versus constant effort harvesting. Environ Resour Econ. 1996;7:193–196. doi: 10.1007/BF00699291
  • G-Q Sun. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 2016;85:1–12. doi: 10.1007/s11071-016-2671-y
  • JF Selgrade, G Namkoong. Stable periodic behavior in a pioneer-climax model. Nat Resour Model. 1990;4:215–227. doi: 10.1111/nrm.1990.4.issue-2
  • J Buchanan. Asymptotic behavior of two interacting pioneer-climax species. Fields Inst Commun. 1999;21:51–63.
  • J Buchanan. Turing instability in pioneer/climax species interactions. Math Biosci. 2005;194:199–216. doi: 10.1016/j.mbs.2004.10.010
  • NM Gilbertson, M Kot. Dynamics of a discrete-time pioneer-climax model. Theor Ecol. 2021;14:501–523. doi: 10.1007/s12080-021-00511-z
  • S Brown, J Dockery, M Pernarowski. Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species. Math Biosci. 2005;194:21–36. doi: 10.1016/j.mbs.2004.10.001
  • J Cao, P Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Comm Pur Appl Anal. 2017;16:1405–1426. doi: 10.3934/cpaa.2017067
  • P Weng, X Zou. Minimal wave speed and spread speed of competing pionner and climax species. Appl Anal. 2014;93:2093–2110. doi: 10.1080/00036811.2013.868442
  • Z Yuan, X Zou. Co-invasion waves in a reaction diffusion model for competing pioneer and climax species. Nonlinear Anal RWA. 2010;11:232–245. doi: 10.1016/j.nonrwa.2008.11.003
  • Y Zhang, S Ma. Invasion dynamics of a diffusive pioneer-climax model: monotone and non-monotone cases. Disc Cont Dyn Syst B. 2021;26:4767–4788.
  • L Shu, P Weng, Y Tian. Traveling wavefronts of a delayed lattice reaction-diffusion model. J Appl Anal Comp. 2015;5:64–76.
  • JP Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math. 1987;47:556–572. doi: 10.1137/0147038
  • S Ma, X Zou. Propagation and its failure in a lattice delayed differential equation with global interaction. J Differ Equ. 2005;212:129–190. doi: 10.1016/j.jde.2004.07.014
  • JE Franke, A-A Yakubu. Pioneer exclusion in a one-hump discrete pioneer-climax competitive system. J Math Biol. 1994;32:771–787. doi: 10.1007/BF00168797
  • JF Selgrade, G Namkoong. Population interactions with growth rates dependent on weighted densities. Differ Equ Models Bio Epidemiology Ecology. 1991;92:247–256. Lecture Notes Biomath.
  • JF Selgrade. Planting and harvesting for pioneer-climax models. Rocky Mountain J Math. 1994;24:293–310.
  • S Sumner. Stable periodic behavior in pioneer-climax competing species models with constant rate forcing. Nat Resour Model. 1998;11:155–171. doi: 10.1111/nrm.1998.11.issue-2
  • C Hu, B Li. Spatial dynamics for lattice differential equations with a shifting habitat. J Differ Equ. 2015;259:1967–1989. doi: 10.1016/j.jde.2015.03.025
  • P Weng, H Huang, J Wu. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J Appl Math. 2003;68:409–439. doi: 10.1093/imamat/68.4.409
  • X Liang, X-Q Zhao. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun Pure Appl Math. 2007;60:1–40. doi: 10.1002/cpa.v60:1
  • M Ma, C Ou. Linear and nonlinear speed selection for mono-stable wave propagations. SIAM J Math Anal. 2019;51:321–345. doi: 10.1137/18M1173691
  • A Alhasanat, C Ou. Minimal-speed selection of traveling waves to the Lotka-Volterra competition model. J Differ Equ. 2019;266:7357–7378. doi: 10.1016/j.jde.2018.12.003
  • KJ Brown, J Carr. Deterministic epidemic waves of critical velocity. Math Proc Cambridge Philos Soc. 1977;81:431–433. doi: 10.1017/S0305004100053494
  • X-Q Zhao, W Wang. Fisher waves in an epidemic model. Disc Cont Dyn Syst B. 2004;4:1117–1128.
  • M Olinick. An introduction to mathematical models in the social and life sciences. Reading, MA: Addison-Welsey; 1978.