487
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

A review of methods to study hydration effects on cartilage friction

ORCID Icon, , ORCID Icon &
Pages 202-214 | Received 14 Jun 2017, Accepted 22 Oct 2017, Published online: 06 Nov 2017

References

  • Charnley J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann Rheum Dis. 1960;19:10–19. DOI:10.1136/Ard.19.1.10
  • Linn FC. Lubrication of animal joints. J Bone Joint Surg. 1967;49:1079–1098.10.2106/00004623-196749060-00005
  • Jay GD, Torres JR, Rhee DK, et al. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007;56:3662–3669. DOI:10.1002/Art.22974
  • Tanaka E, Kawai N, Tanaka M, et al. The frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading. J Dent Res. 2004;83:404–407. DOI:10.1177/154405910408300510
  • Nickel JC, McLachlan KR. In vitro measurement of the frictional properties of the temporomandibular joint disc. Arch Oral Biol. 1994;39:323–331. DOI:10.1016/0003-9969(94)90124-4
  • Walker PS, Dowson D, Longfield MD, et al. ‘Boosted lubrication’ in synovial joints by fluid entrapment and enrichment. Ann Rheum Dis. 1968;27:512–520.10.1136/ard.27.6.512
  • Macconaill MA. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat. 1932;66:210–227.
  • Dowson D, Jin Z-M. Micro-elastohydrodynamic lubrication of synovial joints. Eng Med. 1986;15:63–65.10.1243/EMED_JOUR_1986_015_019_02
  • Gleghorn JP, Bonassar LJ. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J Biomech. 2008;41:1910–1918. DOI:10.1016/j.jbiomech.2008.03.043
  • McCutchen CW. The frictional properties of animal joints. Wear. 1962;5:1–17.10.1016/0043-1648(62)90176-X
  • Chan SMT, Neu CP, DuRaine G, et al. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarthr Cartil. 2010;18:956–963. DOI:10.1016/j.joca.2010.03.012
  • Mow VC, Ateshian GA. Lubrication and wear of diarthrodial joints. Basic Orthop Biomech. 1997;2:275–315.
  • Ateshian GA. The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech. 2009;42:1163–1176. DOI:10.1016/j.jbiomech.2009.04.040
  • Klein J. Hydration lubrication. Friction. 2013;1:1–23. DOI:10.1007/s40544-013-0001-7
  • Lee S, Spencer ND. Aqueous lubrication of polymers: influence of surface modification. Tribol Int. 2005;38:922–930. DOI:10.1016/j.triboint.2005.07.017
  • Urueña JM, Pitenis AA, Nixon, RM, et al. Gregory sawyer, mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 2015;1:24–29. DOI:10.1016/j.biotri.2015.03.001
  • Ateshian GA, Wang HQ. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. J Biomech. 1995;28:1341–1355.10.1016/0021-9290(95)00008-6
  • Caligaris M, Ateshian GAA. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr Cartil. 2008;16:1220–1227. DOI:10.1016/j.joca.2008.02.020
  • Forster H, Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc Inst Mech Eng Part H-J Eng Med. 1999;213:329–345. DOI:10.1243/0954411991535167
  • Bonnevie ED, Galesso D, Secchieri C, et al. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLOS ONE. 2015;10:e0143415. DOI:10.1371/journal.pone.0143415
  • Dunn AC, Pitenis AA, Uruena JM, et al. Kinetics of aqueous lubrication in the hydrophilic hydrogel Gemini interface. Proc Inst Mech Eng Part H J Eng Med. 2015;229:889–894. DOI:10.1177/0954411915612819
  • Graham BT, Moore AC, Burris DL, et al. Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthr Cartil. 2017. DOI:10.1016/j.joca.2017.08.014
  • Moore AC, Burris DL. Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr Cartil. 2016;25:99–107. DOI:10.1016/j.joca.2016.09.018
  • Burris DL, Moore AC. Cartilage and joint lubrication: new insights into the role of hydrodynamics. Biotribology. 2017;12:8–14. DOI:10.1016/J.BIOTRI.2017.09.001
  • Klein J. Molecular mechanisms of synovial joint lubrication. Proc Inst Mech Eng Part J J Eng Tribol. 2006;220:691–710. DOI:10.1243/13506501JET143
  • Waller KA, Zhang LX, Elsaid KA, et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci USA. 2013;110:5852–5857. DOI:10.1073/pnas.1219289110
  • Greene GW, Banquy X, Lee DW, et al. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc Natl Acad Sci. 2011;108:5255–5259. DOI:10.1073/pnas.1101002108
  • Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng Part H-J Eng Med. 1996;210:109–119.10.1243/PIME_PROC_1996_210_399_02
  • Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstial fluid prezzurization in cartilage lubrication. J Orthop Res. 2004;22:565–570.10.1016/j.orthres.2003.07.002
  • Basalo IM, Raj D, Krishnan R, et al. Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation. J Biomech. 2005;38:1343–1349. DOI:10.1016/j.jbiomech.2004.05.045
  • Schmidt TA, Sah RL. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr Cartil. 2007;15:35–47. DOI:10.1016/j.joca.2006.06.005
  • Shi L, Sikavitsas VI, Striolo A. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects. Ann Biomed Eng. 2011;39:132–146. DOI:10.1007/s10439-010-0167-3
  • Kienle S, Boettcher K, Wiegleb L, et al. Comparison of friction and wear of articular cartilage on different length scales. J Biomech. 2015;48:3052–3058. DOI:10.1016/j.jbiomech.2015.07.027
  • Caligaris M, Canal CEE, Ahmad CSS, et al. Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial fluid. Osteoarth Cartil. 2009;17:1327–1332. DOI:10.1016/j.joca.2009.03.020
  • Wang HQ, Ateshian GA. The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech. 1997;30:771–776. DOI:10.1016/S0021-9290(97)00031-6
  • Moore AC, Burris DL. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J Biomech. 2014;47:148–153. DOI:10.1016/j.jbiomech.2013.09.020
  • Accardi MA, Dini D, Cann PM. Experimental and numerical investigation of the behaviour of articular cartilage under shear loading-Interstitial fluid pressurisation and lubrication mechanisms. Tribol Int. 2011;44:565–578. DOI:10.1016/j.triboint.2010.09.009
  • Moore AC, Burris DL. Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthr Cartil. 2015;23:161–169. DOI:10.1016/j.joca.2014.09.021
  • Dunn AC, Sawyer WG, Angelini TE. Gemini interfaces in aqueous lubrication with hydrogels. Tribol Lett. 2014;54:59–66. DOI:10.1007/s11249-014-0308-1
  • Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular-cartilage. J Biomech Eng ASME. 1984;106:165–173.10.1115/1.3138475
  • Grodzinsky AJ, Roth V, Myers E, et al. The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension. J Biomech Eng. 1981;103:221–231. DOI:10.1115/1.3138284
  • Gleghorn JP, Bonassar LJ. Lubrication mode analysis of articular cartilage using stribeck surfaces. J Biomech. 2008;41:1910–1918. DOI:10.1016/j.jbiomech.2008.03.043
  • Bonnevie ED, Baro VJ, Wang LY, et al. In situ studies of cartilage microtribology: roles of speed and contact area. Tribol Lett. 2011;41:83–95.10.1007/s11249-010-9687-0
  • Schmitz TL, Action JE, Ziegert JC, et al. The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J Tribol ASME. 2005;127:673–678. DOI:10.1115/1.1843853
  • Burris DL, Sawyer WG. Addressing practical challenges of low friction coefficient measurements. Tribol Lett. 2009;35:17–23. DOI:10.1007/s11249-009-9438-2
  • Bonnevie ED, Baro VJ, Wang L, et al. Fluid load support during localized indentation of cartilage with a spherical probe. J Biomech. 2012;45:1036–1041. DOI:10.1016/j.jbiomech.2011.12.019
  • Moore AC, Zimmerman BK, Chen X, et al. Experimental characterization of biphasic materials using rate-controlled Hertzian indentation. Tribol Int. 2015;89:2–8. DOI:10.1016/j.triboint.2015.02.001
  • Moore AC, DeLucca JF, Elliott DM, et al. Quantifying cartilage contact modulus, tension modulus, and permeability with Hertzian biphasic creep. J Tribol. 2016;138:414051–414057. DOI:10.1115/1.4032917
  • Schulze KD, Bennett AI, Marshall SL, et al. Real area of contact in a soft transparent interface by particle exclusion microscopy. ASME J Tribol. 2016;1–6. DOI:10.1115/1.4032822
  • Carbone G, Putignano C. A novel methodology to predict sliding and rolling friction of viscoelastic materials: theory and experiments. J Mech Phys Solids. 2013;61:1822–1834. DOI:10.1016/j.jmps.2013.03.005
  • Schätti OR, Gallo LM, Torzilli PA. A model to study articular cartilage mechanical and biological responses to sliding loads. Ann Biomed Eng. 2015;1–12. DOI:10.1007/s10439-015-1543-9
  • Park S, Costa KD, Ateshian GA. Microscale frictional response of bovine articular cartilage from atomic force microscopy. J Biomech. 2004;37:1679–1687. DOI:10.1016/j.jbiomech.2004.02.017
  • Coles JM, Blum JJ, Jay GD, et al. In situ friction measurement on murine cartilage by atomic force microscopy. J Biomech. 2008;41:541–548. DOI:10.1016/j.jbiomech.2007.10.013
  • Beauchamp T. First report on friction experiments; 1883. Available from: http://www.publications.parliament.uk/pa/cm199899/cmselect/cmhealth/074/07407.htm
  • Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos Trans R Soc London. 1886;177:157–234. DOI:10.2307/109480
  • Hamrock BJ, Dowson D. Elastohydrodynamic lubrication of elliptical contacts for materials of low elastic-modulus I – Fully flooded conjunction. Trans ASME J Lubr Technol. 1978;100:236–245. DOI:10.1115/1.3453152
  • Ling FF. A New model of articular cartilage in human joints. J Lubr Technol. 1974;96:449. DOI:10.1115/1.3452000
  • Hou JS, Mow VC, Lai WM, et al. An analysis of the squeeze-film lubrication mechanism for articular cartilage. J Biomech. 1992;25:247–259.10.1016/0021-9290(92)90024-U
  • Jin ZM, Dowson D, Fisher J. The effect of porosity of articular cartilage on the lubrication of a normal human hip joint. Proc Inst Mech Eng Part H J Eng Med. 1992;206:117–124.10.1243/PIME_PROC_1992_206_279_02
  • Hlavacek M. The role of synovial-fluid filtration by cartilage in lubrication of synovial joints. 2. squeeze-film lubrication – homogeneous filtration. J Biomech. 1993;26:1151–1160. DOI:10.1016/0021-9290(93)90063-K
  • Hlavacek M. Lubrication of the human ankle joint in walking with the synovial fluid filtrated by the cartilage with the surface zone worn out: steady pure sliding motion. J Biomech. 1999;32:1059–1069. DOI:10.1016/S0021-9290(99)00095-0
  • Dintenfass L. Lubrication in synovial joints. Nature. 1963;197:496–497. DOI:10.1038/197496b0
  • Shimada E, Matsumura G. Viscosity and molecular weight of hyaluronic acids. J Biochem. 1975;78:513–517.
  • Hamrock BJ, Schmid SR, Jacobson BO. Fundamentals of fluid film lubrication. New York (NY): Marcel Dekker; 2004.
  • Segur JB, Oberstar HE. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43:2117–2120. DOI:10.1021/ie50501a040
  • Herberhold C, Faber S, Stammberger T, et al. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech. 1999;32:1287–1295. DOI:10.1016/S0021-9290(99)00130-X
  • Boettcher K, Kienle S, Nachtsheim J, et al. The structure and mechanical properties of articular cartilage are highly resilient towards transient dehydration. Acta Biomater. 2016;29:180–187. DOI:10.1016/j.actbio.2015.09.034
  • Soltz MA, Ateshian GA. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech. 2006;31:927–934. DOI:10.1016/S0021-9290(98)00105-5
  • Mow VC, Kuei SC, Lai WM, et al. Biphasic creep and stress-relaxation of articular-cartilage in compression – theory and experiments. J Biomech Eng ASME. 1980;102:73–84.10.1115/1.3138202
  • Chahine NO, Albro MB, Lima EG, et al. Effect of dynamic loading on the transport of solutes into agarose hydrogels. Biophys J. 2009;97:968–975. DOI:10.1016/j.bpj.2009.05.047
  • Huang AH, Baker BM, Ateshian GA, et al. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. Eur Cells Mater. 2012;24:29–45. DOI:10.22203/eCM.v024a03
  • Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng. 2006;12:469–79. DOI:10.1089/ten.2006.12.469
  • Andriacchi TP, Mundermann A, Smith RL, et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004;32:447–457.10.1023/B:ABME.0000017541.82498.37
  • Smith RL, Donlon BS, Gupta MK, et al. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res. 1995;13:824–831. DOI:10.1002/jor.1100130604
  • Ekholm R, Norbxck B, Norbäck B. On the relationship between articular changes and function. Acta Orthop. 1951;21:81–98. [cited 2017 Apr 25]. Available from: http://www.tandfonline.com/doi/pdf/10.3109/1745367510902414510.3109/17453675109024145
  • Carter DR, Beaupre GS, Wong M, et al. The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res. 2004;S69–S77. DOI:10.1097/01.blo.0000144970.05107.7e.
  • Sanchez-Adams J, Leddy HA, McNulty AL, et al. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16:451. DOI:10.1007/s11926-014-0451-6
  • Kempson GE, Freeman MAR, Swanson SAV. The determination of a creep modulus for articular cartilage from indentation test on the human femoral head. J Biomech. 1971;4:239–250. DOI:10.1016/0021-9290(71)90030-3
  • Parkes M, Cann P, Jeffers J. Real-time observation of fluid flows in tissue during stress relaxation using Raman spectroscopy. J Biomech. 2017;60:261–265. DOI:10.1016/j.jbiomech.2017.06.004
  • Albro MB, Chahine NO, Li R, et al. Dynamic loading of deformable porous media can induce active solute transport. J Biomech. 2008;41:3152–3157. DOI:10.1016/j.jbiomech.2008.08.023
  • Maroudas A. Transport of solutes through cartilage: permeability to large molecules. J Anat. 1976;122:335–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.