548
Views
7
CrossRef citations to date
0
Altmetric
Research paper

Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication

, & ORCID Icon
Pages 27-43 | Received 29 Oct 2017, Accepted 29 Jan 2018, Published online: 08 Feb 2018

References

  • Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int. 2012;47:221–234.10.1016/j.triboint.2011.11.022
  • Agency IE. Energy technology perspectives...: scenarios & strategies to 2050. Paris Cedex: OECD/IEA; 2006.
  • Smith RA. Enabling technologies for demand management: Transport. Energy Policy 2008;36:4444–4448.10.1016/j.enpol.2008.09.072
  • Jost HP. Lubrication: tribology; education and research; report on the present position and industry’s needs (submitted to the Department of Education and Science by the Lubrication Engineering and Research) working group. London: HM Stationery Office; 1966.
  • Tzanakis I, Hadfield M, Thomas B, et al. Future perspectives on sustainable tribology. Renew Sustain Energy Rev. 2012;16:4126–4140.10.1016/j.rser.2012.02.064
  • Jost HP. COMMENTARY-tribology micro & macro economics: a road to economic savings-when will the world truly understand the role tribology plays in reducing costs, improving safety and protecting life? Tribol Lubr Technol. 2005;61:18–23.
  • Mobarak H, Niza Mohamad EN, Masjuki H, et al. The prospects of biolubricants as alternatives in automotive applications. Renew Sustain Energy Rev. 2014;33:34–43.10.1016/j.rser.2014.01.062
  • Hsu SM, Gates R. Boundary lubricating films: formation and lubrication mechanism. Tribol Int. 2005;38:305–312.10.1016/j.triboint.2004.08.021
  • Hori Y. Hydrodynamic lubrication. New York: Springer Science & Business Media; 2006.
  • Höglund E. Influence of lubricant properties on elastohydrodynamic lubrication. Wear 1999;232:176–184.10.1016/S0043-1648(99)00143-X
  • Sgroi M, Asti M, Gili F, et al. Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction. Tribol Int. 2017;105:317–325.10.1016/j.triboint.2016.10.013
  • Zin V, Agresti F, Barison S, et al. Tribological properties of engine oil with carbon nano-horns as nano-additives. Tribol Lett. 2014;55:45–53.10.1007/s11249-014-0330-3
  • Ali MKA, Xianjun H, Turkson RF, et al. Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives. RSC Adv. 2016;6:77913–77924.
  • Ali MKA, Xianjun H, Elagouz A, et al. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. J Nanopart Res. 2016;18:347.10.1007/s11051-016-3679-4
  • Thakur MR, Srinivas DV, Jain DA. Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribol Trans. 2016;60:12–19.
  • Sgroi M, Gili F, Mangherini D, et al. Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol Trans. 2015;58:207–214.10.1080/10402004.2014.960540
  • Sundus F, Fazal M, Masjuki H. Tribology with biodiesel: a study on enhancing biodiesel stability and its fuel properties. Renew Sustain Energy Rev. 2017;70:399–412.10.1016/j.rser.2016.11.217
  • Panchal TM, Patel A, Chauhan D, et al. A methodological review on bio-lubricants from vegetable oil based resources. Renew Sustain Energy Rev. 2017;70:65–70.10.1016/j.rser.2016.11.105
  • Agarwal AK, Dhar A. Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine. Renew Energy. 2013;52:283–291.10.1016/j.renene.2012.10.015
  • Masjuki H, Maleque M, Kubo A, et al. Palm oil and mineral oil based lubricants – their tribological and emission performance. Tribol Int. 1999;32:305–314.10.1016/S0301-679X(99)00052-3
  • Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33:233–271.10.1016/j.pecs.2006.08.003
  • Chhibber V, Saxena MSK. Comparative study – a mineral oil based lubricant and lubricant obtained from vegetable oil.
  • Gomez MG, Howard-Hildige R, Leahy J, et al. Emission and performance characteristics of a 2 litre Toyota diesel van operating on esterified waste cooking oil and mineral diesel fuel. Urban air quality: measurement, modelling and management: Springer; 2000. p. 13–20.
  • Wu X, Zhang X, Yang S, et al. The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. J Am Oil Chem Soc. 2000;77:561–563.10.1007/s11746-000-0089-2
  • Adhvaryu A, Erhan S. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind Crops Prod. 2002;15:247–254.10.1016/S0926-6690(01)00120-0
  • Biresaw G, Adhvaryu A, Erhan S. Friction properties of vegetable oils. J Am Oil Chem Soc. 2003;80:697–704.10.1007/s11746-003-0760-7
  • Fox N, Tyrer B, Stachowiak G. Boundary lubrication performance of free fatty acids in sunflower oil. Tribol Lett. 2004;16:275–281.10.1023/B:TRIL.0000015203.08570.82
  • Castro W, Perez JM, Erhan SZ, et al. A study of the oxidation and wear properties of vegetable oils: soybean oil without additives. J Am Oil Chem Soc. 2006;83:47–52.10.1007/s11746-006-1174-2
  • Dermawan D, Pertiwi DS, Siddik A, et al. Bio-lubricants development: reducing wear scar diameters using ashless additives.
  • Salih N, Salimon J, Yousif E. The physicochemical and tribological properties of oleic acid based triester biolubricants. Ind Crops Prod. 2011;34:1089–1096.10.1016/j.indcrop.2011.03.025
  • Syahrullail S, Kamitani S, Shakirin A. Performance of vegetable oil as lubricant in extreme pressure condition. Procedia Eng. 2013;68:172–177.10.1016/j.proeng.2013.12.164
  • Cermak SC, Biresaw G, Isbell TA, et al. New crop oils – properties as potential lubricants. Ind Crops Prod. 2013;44:232–239.10.1016/j.indcrop.2012.10.035
  • Shahabuddin M, Masjuki H, Kalam M. Experimental investigation into tribological characteristics of bio-lubricant formulated from jatropha oil. Procedia Eng. 2013;56:597–606.10.1016/j.proeng.2013.03.165
  • Stachowiak G, Batchelor AW. Engineering tribology. Oxford, UK: Butterworth-Heinemann; 2013.
  • Hashem A, Abou Elmagd W, Salem A, et al. Conversion of some vegetable oils into synthetic lubricants. Energy Source A. 2013;35:397–400.10.1080/15567036.2010.514587
  • Nagendramma P, Kaul S. Development of ecofriendly/biodegradable lubricants: An overview. Renew Sustain Energy Rev. 2012;16:764–774.10.1016/j.rser.2011.09.002
  • Fox N, Stachowiak G. Vegetable oil-based lubricants – a review of oxidation. Tribol Int. 2007;40:1035–1046.10.1016/j.triboint.2006.10.001
  • Aluyor EO, Obahiagbon KO, Ori-jesu M. Biodegradation of vegetable oils: a review. Sci Res Essays. 2009;4:543–548.
  • Jayadas N, Nair KP. Coconut oil as base oil for industrial lubricants – evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int. 2006;39:873–878.10.1016/j.triboint.2005.06.006
  • Liaquat A, Masjuki H, Kalam M, et al. Effect of coconut biodiesel blended fuels on engine performance and emission characteristics. Procedia Eng. 2013;56:583–590.10.1016/j.proeng.2013.03.163
  • Agrawal SM, Lahane S, Patil N, et al. Experimental investigations into wear characteristics of M2 steel using cotton seed oil. Procedia Eng. 2014;97:4–14.10.1016/j.proeng.2014.12.218
  • Rashid U, Anwar F, Knothe G. Evaluation of biodiesel obtained from cottonseed oil. Fuel Process Technol. 2009;90:1157–1163.10.1016/j.fuproc.2009.05.016
  • Guinda Á, Dobarganes MC, Ruiz-Mendez M, et al. Chemical and physical properties of a sunflower oil with high levels of oleic and palmitic acids. Eur J Lipid Sci Technol. 2003;105:130–137.10.1002/ejlt.200390028
  • Schneider MP. Plant-oil-based lubricants and hydraulic fluids. J Sci Food Agric. 2006;86:1769–1780.10.1002/(ISSN)1097-0010
  • Sahasrabudhe M. Crismer values and erucic acid contents of rapeseed oils. J Am Oil Chem Soc. 1977;54:323–324.10.1007/BF02672436
  • Qiu D, Morgan C, Shi J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet. 2006;114:67–80.10.1007/s00122-006-0411-2
  • Leonard EC. High-erucic vegetable oils. Ind Crops Prod. 1992;1:119–123.10.1016/0926-6690(92)90009-K
  • Nieschlag H, Wolff I. Industrial uses of high erucic oils. J Am Oil Chem Soc. 1971;48:723–727.10.1007/BF02638529
  • Eskin NAM, McDonald BE. Canola oil. Nutr Bull. 1991;16:138–146.10.1111/nbu.1991.16.issue-3
  • Ogunniyi D. Castor oil: a vital industrial raw material. Biores Technol. 2006;97:1086–1091.10.1016/j.biortech.2005.03.028
  • Lee K, Hwang Y, Cheong S, et al. Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett. 2009;35:127–131.10.1007/s11249-009-9441-7
  • Viesca J, Hernández Battez AH, González R, et al. Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int. 2011;44:829–833.10.1016/j.triboint.2011.02.006
  • Asrul M, Zulkifli N, Masjuki H, et al. Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Eng. 2013;68:320–325.10.1016/j.proeng.2013.12.186
  • Peng D, Kang Y, Hwang R, et al. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol Int. 2009;42:911–917.10.1016/j.triboint.2008.12.015
  • Lee C-G, Hwang Y-J, Choi Y-M, et al. A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf. 2009;10:85–90.10.1007/s12541-009-0013-4
  • Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett. 2004;17:961–966.10.1007/s11249-004-8109-6
  • Ahmadi H, Rashidi A, Mohtasebi S-S. Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines. Int J Precis Eng Manuf. 2013;14:805–809.
  • Tao X, Jiazheng Z, Kang X. The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D Appl Phys. 1996;29:2932.10.1088/0022-3727/29/11/029
  • Lee K, Hwang Y, Cheong S, et al. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys. 2009;9:e128–e131.10.1016/j.cap.2008.12.054
  • Gulzar M, Masjuki H, Kalam M, et al. Tribological performance of nanoparticles as lubricating oil additives. J Nanopart Res. 2016;18:347.10.1007/s11051-016-3537-4
  • Hu ZS, Lai R, Lou F, et al. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 2002;252:370–374.10.1016/S0043-1648(01)00862-6
  • Yu H-l, XU Y, Shi P-J, et al. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Met Soc China. 2008;18:636–641.10.1016/S1003-6326(08)60111-9
  • Koshy CP, Rajendrakumar PK, Thottackkad MV. Analysis of tribological and thermo-physical properties of surfactant-modified vegetable oil-based CuO nano-lubricants at elevated temperatures – an experimental study. Tribol Online. 2015;10:344–353.10.2474/trol.10.344
  • Xu ZY, Hu KH, Han CL, et al. Morphological influence of molybdenum disulfide on the tribological properties of rapeseed oil. Tribol Lett. 2013;49:513–524.10.1007/s11249-012-0092-8
  • Su Y, Gong L, Chen D. An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomat. 2015;16:203.
  • Shaari MZ, Roselina NN, Kasolang S, et al. Investigation of tribological properties of palm oil biolubricant modified nanoparticles. Jurnal Teknologi 2015;76:69–73.
  • Arumugam S, Sriram G. Synthesis and characterisation of rapeseed oil bio-lubricant–its effect on wear and frictional behaviour of piston ring–cylinder liner combination. Proc Inst Mech Eng J. 2012:1350650112458398.
  • Kanagasabapathi N, Balamurugan K, Mayilsamy K. Wear and thermal conductivity studies on nano copper particle suspended soya bean lubricant. J Sci Ind Res. 2012;71:492.
  • Koshy CP, Rajendrakumar PK, Thottackkad MV. Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 2015;330–331:288–308.10.1016/j.wear.2014.12.044
  • Zulkifli N, Kalam M, Masjuki H, et al. Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Eng. 2013;68:152–157.10.1016/j.proeng.2013.12.161
  • Baskar S, Sriram G, Arumugam S. Experimental analysis on tribological behavior of nano based bio-lubricants using four ball tribometer. Tribol Ind. 2015;37.
  • Thottackkad MV, Perikinalil RK, Kumarapillai PN. Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf. 2012;13:111–116.10.1007/s12541-012-0015-5
  • Xu Y, Hu E, Hu K, et al. Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear. Tribol Int. 2015;92:172–183.10.1016/j.triboint.2015.06.011
  • Gulzar M, Masjuki H, Varman M, et al. Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol Int. 2015;88:271–279.10.1016/j.triboint.2015.03.035
  • Kashyap A, Harsha A. Tribological studies on chemically modified rapeseed oil with CuO and CeO2 nanoparticles. Proc Inst Mech Eng J. 2016;230: 1562–1571.1350650116641328.
  • Kecheng G, Boshui C, Yong C. Preparation and tribological properties of lanthanum-doped TiO2 nanoparticles in rapeseed oil. J Rare Earths. 2013;31:589–594.
  • Gu K, Chen B, Wang X, et al. Preparation, friction, and wear behaviors of cerium-doped anatase nanophases in rapeseed oil. Ind Eng Chem Res. 2014;53:6249–6254.10.1021/ie403621k
  • Alves S, Barros B, Trajano M, et al. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int. 2013;65:28–36.10.1016/j.triboint.2013.03.027
  • Reeves CJ, Menezes PL, Lovell MR, et al. The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol Lett. 2013;51:437–452.10.1007/s11249-013-0182-2
  • Mahipal D, Krishnanunni P, Rafeekh PM, et al. Analysis of lubrication properties of zinc-dialkyl-dithio-phosphate (ZDDP) additive on Karanja oil (Pongamia pinnatta) as a green lubricant. Int J Eng Res. 2014;3:494–496.
  • Dai W, Kheireddin B, Gao H, et al. Roles of nanoparticles in oil lubrication. Tribol Int. 2016;102:88–98.10.1016/j.triboint.2016.05.020
  • Asadauskas SJ, Kreivaitis R, Bikulčius G, et al. Tribological effects of Cu, Fe and Zn nano-particles, suspended in mineral and bio-based oils. Lubr Sci. 2016;28:157–176.10.1002/ls.v28.3
  • Arumugam S, Sriram G. Preliminary study of nano- and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil. Tribol Trans. 2013;56:797–805.10.1080/10402004.2013.792977
  • Hernández Battez AH, González R, Viesca J, et al. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 2008;265:422–428.10.1016/j.wear.2007.11.013
  • Kogovšek J, Kalin M. Various MoS2-, WS2- and C-based micro- and nanoparticles in boundary lubrication. Tribol Lett. 2014;53:585–597.10.1007/s11249-014-0296-1
  • Peng D-X, Kang Y, Chen C-H, et al. The tribological behavior of modified diamond nanoparticles in liquid paraffin. Ind Lubr Tribol. 2009;61:213–219.10.1108/00368790910960057
  • Luo T, Wei X, Zhao H, et al. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram Int. 2014;40:10103–10109.10.1016/j.ceramint.2014.03.181
  • Li W, Zheng S, Cao B, et al. Friction and wear properties of ZrO2/SiO2 composite nanoparticles. J Nanopart Res. 2011;13:2129–2137.10.1007/s11051-010-9970-x
  • Peng D-X, Chen C-H, Kang Y, et al. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind Lubr Tribol. 2010;62:111–120.10.1108/00368791011025656
  • Sun J, Simon S. The melting behavior of aluminum nanoparticles. Thermochim Acta. 2007;463:32–40.10.1016/j.tca.2007.07.007
  • Mustafa A. Nanoparticle-based lubrication systems. J Powder Metall Min. 2011;1:e101.
  • Zhang T, Ma T, Gao PG, et al. Study on the microstructure of inorganic fullerene-like WS2. Key Eng Mater. 2013;544:183–186.
  • Si Y, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater. 2008;20:6792–6797.10.1021/cm801356a
  • Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1.
  • Muzakkir S, Lijesh K, Hirani H. Effect of base oil on the anti-wear performance of multi-walled carbon nano-tubes (MWCNT). Int J Curr Eng Technol. 2015;5:681–684.
  • Ilie F, Covaliu C. Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive. Lubricants 2016;4:12.10.3390/lubricants4020012
  • Erhan SZ, Asadauskas S. Lubricant basestocks from vegetable oils. Ind Crops Prod. 2000;11:277–282.10.1016/S0926-6690(99)00061-8
  • Erhan SZ, Sharma BK, Perez JM. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind Crops Prod. 2006;24:292–299.10.1016/j.indcrop.2006.06.008
  • Aluyor EO, Ori-Jesu M. The use of antioxidants in vegetable oils – a review. Afr J Biotech. 2008;7.
  • Asadauskas S, Erhan SZ. Depression of pour points of vegetable oils by blending with diluents used for biodegradable lubricants. J Am Oil Chem Soc. 1999;76:313–316.10.1007/s11746-999-0237-6
  • Bírová A, Pavlovičová A, Cvenroš J. Lubricating oils based on chemically modified vegetable oils. J Synth Lubr. 2002;18:291–299.10.1002/(ISSN)1557-6841
  • Salimon J, Salih N, Yousif E. Biolubricants: raw materials, chemical modifications and environmental benefits. Eur J Lipid Sci Technol. 2010;112:519–530.
  • dos Santos Politi JR, de Matos PRR, Sales MJA. Comparative study of the oxidative and thermal stability of vegetable oils to be used as lubricant bases. J Therm Anal Calorim. 2013;111:1437–1442.10.1007/s10973-012-2529-6
  • Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995;30:277–290.10.1007/BF02536034
  • Karmakar G, Ghosh P, Sharma BK. Chemically modifying vegetable oils to prepare green lubricants. Lubricants 2017;5:44.10.3390/lubricants5040044
  • Bokade VV, Yadav GD. Transesterification of edible and nonedible vegetable oils with alcohols over heteropolyacids supported on acid-treated clay. Ind Eng Chem Res. 2009;48:9408–9415.10.1021/ie801543k
  • Ferrari RAP. Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters. Scientia Agricola. 2005;62:291–295.10.1590/S0103-90162005000300014
  • Campanella A, Baltanás MA, Capel-Sánchez MC, et al. Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst. Green Chem. 2004;6:330–334.10.1039/B404975F
  • Suslick KS. Kirk-Othmer encyclopedia of chemical technology. Vol. 26. New York: Wiley; 1998. p. 517–541.
  • Srivastava A, Sahai P. Vegetable oils as lube basestocks: a review. Afr J Biotech. 2013;12.
  • Pirro DM, Webster M, Daschner E. Lubrication fundamentals, revised and expanded. Boca Raton (FL): CRC Press; 2016.
  • Rudnick LR. Synthetics, mineral oils, and bio-based lubricants: chemistry and technology. Boca Raton (FL): CRC Press; 2013.10.1201/CRCCHEMINDUS
  • Shafi WK, Raina A, Haq MI. Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime. Ind Lubr Tribol. 2018;70. doi: 10.1108/ILT-06-2017-0166.
  • Aluyor EO, Obahiagbon KO, Ori-jesu M. Biodegradation of vegetable oils: a review. Sci Res Essays. 2009;4:543–548.
  • Global lubricants market size, share, development, growth and demand forecast to 2020 – industry insights by product (mineral, synthetic, bio-based), by application (industrial, automotive, grease, others).
  • Freedonia Group Inc. World lubricants – industry study with forecasts for 2017 & 2022. Cleveland (OH): Freedonia Group Study#3040; July 2013.
  • Grand view research – biolubricants market analysis by raw material (vegetable & animal oil), by application (automotive (automotive engine oils, gear oils, hydraulic oils, transmission fluids, greases, chainsaw oils), industrial (process oils, demolding oils, industrial gear oils, industrial greases, metal working fluids)), by end-use (industrial, commercial transportation, consumer automotive) segment forecasts to 2024.
  • Biolubricants market size to reach $2.92 billion by 2024.
  • Kumar A, Sharma S. Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renew Sustain Energy Rev. 2011;15:1791–1800.10.1016/j.rser.2010.11.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.