195
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

On the role of sliding load and heat input conditions in friction stir processing on tribology of aluminium alloy–alumina surface composites

, &
Pages 88-101 | Received 26 Oct 2018, Accepted 02 Mar 2019, Published online: 17 Mar 2019

References

  • Zhang J, Alpas AT. Wear regimes and transitions in Al2O3 particulate-reinforced aluminum alloys. Mater Sci Engg A. 1993;161(2):273–284. doi: 10.1016/0921-5093(93)90522-G
  • Roy D, Basu B, Mallick AB. Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite. Intermetallics. 2005;13(7):733–740. doi: 10.1016/j.intermet.2004.11.005
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. J Alloy Compd. 2019;785:531–541. doi: 10.1016/j.jallcom.2019.01.211
  • Zohoor M, Givi MKB, Salami P. Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing. Mater Des. 2012;39:358–365. doi: 10.1016/j.matdes.2012.02.042
  • Hosseinipour SJ. An investigation into hot deformation of aluminum alloy 5083. Mater Des. 2009;30(2):319–322. doi: 10.1016/j.matdes.2008.04.063
  • Deuis RL, Subramanian C, Yellup JM. Dry sliding wear of aluminium composites-A review. Comp Sci Tech. 1997;57(4):415–435. doi: 10.1016/S0266-3538(96)00167-4
  • Sharma V, Kumar S, Panwar RS, et al. Microstructural and wear behavior of dual reinforced particle (DRP) aluminum alloy composite. J Mater Sci. 2012;47(18):6633–6646. doi: 10.1007/s10853-012-6599-4
  • Liu YB, Lim SC, Lu L, et al. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. J Mater Sci. 1994;29:1999–2007. doi: 10.1007/BF01154673
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Reports. 2005;50(1):1–78. doi: 10.1016/j.mser.2005.07.001
  • Sharma V, Gupta Y, Kumar BVM, et al. Friction stir processing strategies for uniform distribution of reinforcement in a surface composite. Mater Manuf Proc. 2016;31:1384–1392. doi: 10.1080/10426914.2015.1103869
  • Khayyamin D, Mostafapour A, Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater Sci Eng. A. 2013;559:217–221. doi: 10.1016/j.msea.2012.08.084
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134. doi: 10.1016/j.jmatprotec.2015.04.019
  • Tang F, Wu X, Ge S, et al. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear. 2008;264(7-8):555–561. doi: 10.1016/j.wear.2007.04.006
  • Hosseini M, Yazdani A, Danesh HM. Al 5083/SiCp composites produced by continual annealing and roll-bonding. Mater Sci Eng A. 2013;585:415–421. doi: 10.1016/j.msea.2013.07.077
  • Soleymani S, Abdollah-zadeh A, Alidokht SA. Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. Wear. 2012;278-279:41–47. doi: 10.1016/j.wear.2012.01.009
  • Behnagh RA, Givi MKB, Akbari M. Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater Manuf Proc. 2012;27(6):636–640. doi: 10.1080/10426914.2011.593243
  • Fu RD, Zhang JF, Li YJ, et al. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Mater Sci Eng A. 2013;559:319–324. doi: 10.1016/j.msea.2012.08.105
  • Tan L, Allen TR. Effect of thermomechanical treatment on the corrosion of AA5083. Corr Sci. 2010;52(2):548–554. doi: 10.1016/j.corsci.2009.10.013
  • Sharifitabar M, Sarani A, Khorshahian S, et al. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater Des. 2011;32(8):4164–4172. doi: 10.1016/j.matdes.2011.04.048
  • Moghaddas MA, Kashani-Bozorg SF. Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing. Mater Sci Eng A. 2013;559:187–193. doi: 10.1016/j.msea.2012.08.073
  • Barmouz M, Givi MKB, Seyfi J. On the role of processing parameters in producingCu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Char. 2011;62(1):108–117. doi: 10.1016/j.matchar.2010.11.005
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041. doi: 10.1016/j.matdes.2010.11.055
  • Wen W, Zhao Y, Morris JG. The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys. Mater Sci Eng A. 2005;392:136–144. doi: 10.1016/j.msea.2004.09.059
  • Zahmatkesh B, Enayati MH. A novel approach for development of surface nanocomposite by friction stir processing. Mater Sci Eng A. 2010;527:6734–6740. doi: 10.1016/j.msea.2010.07.024
  • Mostafapour Asl A, Khandani ST. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method. Mater Sci Eng A. 2013;559:549–557. doi: 10.1016/j.msea.2012.08.140
  • Gee MG. The formation of aluminium hydroxide in the sliding wear of alumina. Wear. 1992;153:201–227. doi: 10.1016/0043-1648(92)90270-I
  • Perez-Unzueta AJ, Beynon JH, Gee MG. Effects of surrounding atmosphere on the wear of sintered alumina. Wear. 1991;146(1):179–196. doi: 10.1016/0043-1648(91)90233-K
  • Iacob G, Ghica VG, Buzatu M, et al. Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Composites: Part B. 2015;69:603–611. doi: 10.1016/j.compositesb.2014.07.008
  • Jahanmir S, Suh NP. Mechanics of subsurface void nucleation in delamination wear. Wear. 1977;44:17–38. doi: 10.1016/0043-1648(77)90082-5
  • Mahdavian SM, Mai YW, Cotterel B. Friction, metallic transfer and debris analysis of sliding surfaces. Wear. 1982;82(2):221–232. doi: 10.1016/0043-1648(82)90294-0
  • Edalati K, Ashida M, Horita Z, et al. Wear resistance and tribological features of pure aluminium and Al-Al2O3 composites consolidated by high-pressure torsion. Wear. 2014;310(1–2):83–89. doi: 10.1016/j.wear.2013.12.022
  • Jerina J, Kalin M. Initiation and evolution of the aluminium-alloy transfer on hot-work tool steel at temperatures from 20 °C to500 °C. Wear. 2014;319(1–2):234–244. doi: 10.1016/j.wear.2014.07.021
  • Chen LH, Rigney DA. Transfer during unlubricated sliding wear of selected metal systems. Wear. 1985;105(1):47–61. doi: 10.1016/0043-1648(85)90005-5
  • Rigney DA, Chen LH, Naylor MGS. Wear processes in sliding systems. Wear. 1984;100(1–3):195–219. doi: 10.1016/0043-1648(84)90013-9
  • Alpas AT, Zhang J. Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metall Mater Trans. A. 1994;25(5):969–983. doi: 10.1007/BF02652272
  • Kim HJ, Karthikeyan S, Rigney D. The structure and composition of aluminum wear debris generated by unlubricated sliding in different environments. Wear. 2007;263(1):849–857. doi: 10.1016/j.wear.2006.12.016
  • Youssef KM, Scattergood RO, Murty KL, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater. 2006;54(2):251–256. doi: 10.1016/j.scriptamat.2005.09.028
  • Li XY, Tandon KN. Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite. Wear. 2000;245(1):148–161. doi: 10.1016/S0043-1648(00)00475-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.