405
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Influence of lubricants on the performance of journal bearings – a review

ORCID Icon, &
Pages 67-78 | Received 16 Jul 2019, Accepted 02 Jan 2020, Published online: 16 Jan 2020

References

  • Chhabra RP. Non-Newtonian fluids: an introduction. In: Deshpande AP, Krishnan JM, Kumar S, editor. Rheology of complex fluids. New York (NY): Springer; 2010. p. 3–34.
  • Spikes HA. The behaviour of lubricants in contacts: current understanding and future possibilities. ProcInst Mech Eng, Part J: J Eng Tribol. 1994;208(1):3–15.
  • Garg HC, Sharda HB, Kumar V. On the design and development of hybrid journal bearings: a review. Tribotest. 2006;12(1):1–19.
  • Rahmatabadi AD, Nekoeimehr M, Rashidi R. Micropolar lubricant effects on the performance of noncircular lobed bearings. Tribol Int. 2010;43(1/2):404–413.
  • Sharma SC, Jain SC, Sinhasan R, et al. Static and dynamic performance characteristics of orifice compensated hydrostatic flexible journal bearings with non-Newtonian lubricants. Tribol Trans. 2001;44(2):242–248.
  • Deysarkar AK, Ulbrecht J. Flow of power law liquids between eccentric rotating cylinders. Chem Eng J. 1977;13(1):45–59.
  • Chu HM, Li WL, Chang YP. Thin film elastohydrodynamic lubrication – a power-law fluid model. Tribol Int. 2006;39(11):1474–1481.
  • Nessil A, Larbi S, Belhaneche H, et al. Journal bearings lubrication aspect analysis using non-Newtonian fluids. Adv Tribol. 2013;2013(Article ID 212568):1–9.
  • Garg HC, Kumar V. Static performance characteristics of hybrid journal bearings with plugged entry holes. Ind Lubr Tribol. 2013;65(5):333–340.
  • Ram N. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings. J Tribol. 2016;9:18–44.
  • Prasad D, Panda SS, Subrahmanyam SV. Power law fluid film lubrication of journal bearing with squeezing and temperature effects. In: Patel HC, Deheri G, Patel HS, et al., editors. Proceedings of international conference on advances in tribology and engineering systems. New Delhi: Springer; 2014. p. 73–84.
  • Khatri CB, Sharma SC. Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant. Tribol Int. 2016;95:221–235.
  • Dowson D. A generalized Reynolds equation for fluid-film lubrication. Int J Mech Sci. 1962;4(2):159–170.
  • Fowles PE. A simpler form of the general Reynolds equation. J Lubr Technol. 1970;92(4):661–662.
  • Kucinschi BR, Fillon M, Fre J, et al. A transient thermoelastohydrodynamic study of steadily loaded plain journal bearings using finite element method analysis. J Tribol. 2000;122(1):219–226.
  • Stokes VK. Couple stresses in fluids. Phys Fluids. 1966;9(9):1709–1715.
  • Ariman TMAND, Turk MA, Sylvester ND. Microcontinuum fluid mechanics – a review. Int J Eng Sci. 1973;11(8):905–930.
  • Ariman TTND, Turk MA, Sylvester ND. Applications of microcontinuum fluid mechanics. Int J Eng Sci. 1974;12(4):273–293.
  • Lin JR. Effects of couple stresses on the lubrication of finite journal bearings. Wear. 1997;206(1/2):171–178.
  • Guha SK. A theoretical analysis of dynamic characteristics of finite hydrodynamic journal bearings lubricated with coupled stress fluids. Proc Inst Mech Eng, Part J: J Eng Tribol. 2004;218(2):125–133.
  • Elsharkawy AA. Effects of lubricant additives on the performance of hydrodynamically lubricated journal bearings. Tribol Lett. 2005;18(1):63–73.
  • Wang XL, Zhu KQ, Wen SZ. On the performance of dynamically loaded journal bearings lubricated with couple stress fluids. Tribol Int. 2002;35(3):185–191.
  • Das NC. Elastohydrodynamic lubrication theory of line contacts: couple stress fluid model. Tribol Trans. 1997;40(2):353–359.
  • Sharma SC, Ram N. Influence of couple stress lubricant on the performance of orifice compensated non-recessed hole-entry hydrostatic/hybrid journal bearing. ASME/STLE 2012 international joint tribology conference. Denver, Colorado, USA: American Society of Mechanical Engineers; 2012. p. 143–145. https://doi.org/10.1115/IJTC2012-61013.
  • Guha SK. Linear stability performance analysis of finite hydrostatic porous journal bearings under the coupled stress lubrication with the additives effects into pores. Tribol Int. 2010;43(8):1294–1306.
  • Wang XL, Zhu KQ, Gui CL. A study of a journal bearing lubricated by couple stress fluids considering thermal and cavitation effects. Proc Inst Mech Eng, Part J: J Eng Tribol. 2002;216(5):293–305.
  • Naduvinamani NB, Hiremath PS, Tasneem Fathima S. On the squeeze film lubrication of long porous journal bearings with couple stress fluids. Ind Lubr Tribol. 2005;57(1):12–20.
  • Lahmar M. Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids. Proc Inst Mech Eng, Part J: J Eng Tribol. 2005;219(2):145–165.
  • Nada GS, Osman TA. Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses. Tribol Lett. 2007;27(3):261–268.
  • Daniel K, Mathew K, Mark K. Investigation of temperature effects for a finite elasto-hydrodynamic journal bearing lubricated by Ferro fluids with couple stresses. J Comput Model. 2015;5(3):81–97.
  • Ma YY. Performance of dynamically loaded journal bearings lubricated with couple stress fluids considering the elasticity of the liner. J Zhejiang Univer-Sci A. 2008;9(7):916–921.
  • Boucherit H, Lahmar M, Bou-Said B. Misalignment effects on steady-state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids. Lubr Sci. 2008;20(3):241–268.
  • Naduvinamani NB, Patil SB. Numerical solution of finite modified Reynolds equation for couple stress squeeze film lubrication of porous journal bearings. Comput Struct. 2009;87(21/22):1287–1295.
  • Crosby WA, Chetti B. The static and dynamic characteristics of a two-lobe journal bearing lubricated with couple-stress fluid. Tribol Trans. 2009;52(2):262–268.
  • Sharma N, Kango S, Sharma RK. Sunil: investigations on the effects of surface texture on the performance of a porous journal bearing operating with couple stress fluids. Int J Surf Sci Eng. 2014;8(4):392–407.
  • Khatri CB, Sharma SC. Influence of couple stress lubricant on the performance of textured two-lobe slot-entry hybrid journal bearing system. Proc Inst Mech Eng, Part J: J Eng Tribol. 2017;231(3):366–384.
  • Ram N. Influence of couple stress lubricants on hole-entry hybrid journal bearings. Jurnal Tribologi. 2017;14:32–49.
  • Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16(1):1–18.
  • Eringen AC. Simple microfluids. Int J Eng Sci. 1964;2(2):205–217.
  • Allen SJ, Kline KA.Lubrication theory for micropolar fluids. J Appl Mech. 1971;38(3):646–650.
  • Balaram M, Sastri VUK. Micropolar lubrication. J Appl Mech. 1972;39(3):834–836.
  • Mahanti AC. A theoretical study of the effect of solid particles in the lubricant of a partial journal bearing. Wear. 1976;39(1):45–53.
  • Zaheeruddin K, Isa M. Micropolar fluid lubrication of one-dimensional journal bearings. Wear. 1978;50(2):211–220.
  • Zaheeruddin KH. Squeeze-film narrow porous journal bearings lubricated with a micropolar fluid. Wear. 1980;64(1):163–174.
  • Zaheeruddin K. The dynamic behaviour of squeeze films in one-dimensional porous journal bearings lubricated by a micropolar fluid. Wear. 1981;71(2):139–152.
  • Naduvinamani NB, Huggi SS. Micropolar fluid squeeze film lubrication of short partial porous journal bearings. Proc Inst Mech Eng, Part J: J Eng Tribol. 2009;223(8):1179–1185.
  • Naduvinamani NB, Santosh S, Siddanagouda A. On the squeeze film lubrication of rough short porous partial journal bearings with micropolar fluids. Proc Inst Mech Eng, Part J: J Eng Tribol. 2010;224(3):249–257.
  • Isa M, Zaheeruddin KH. One-dimensional porous journal bearings lubricated with micropolar fluid. Wear. 1980;63(2):257–270.
  • Tipei N. Lubrication with micropolar liquids and its application to short bearings. J Lubr Technol. 1979;101(3):356–363.
  • Chang-Jian CW, Chen CK. Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int J Eng Sci. 2006;44(15/16):1050–1070.
  • Zu-gan Q, Zhang-ji L. Lubrication theory for micropolar fluids and its application to a journal bearing with finite length. Appl Math Mech. 1987;8(7):655–665.
  • Huang TW, Weng CI, Chen CK. Analysis of finite width journal bearings with micropolar fluids. Wear. 1988;123(1):1–12.
  • Khonsari MM, Brewe DE. On the performance of finite journal bearings lubricated with micropolar fluids. Tribol Trans. 1989;32(2):155–160.
  • Huang TW, Weng CI. Dynamic characteristics of finite-width journal bearings with micropolar fluids. Wear. 1990;141(1):23–33.
  • Tsann-Rong L. Analysis of film rupture and re-formation boundaries in a finite journal bearing with micropolar fluids. Wear. 1993;161(1/2):145–153.
  • Narayanan R, Narayanan CC, Nair KP. Analysis of mass transfer effects on the performance of journal bearings using micropolar lubricant. Heat Mass Transfer. 1995;30(6):429–433.
  • Nair VS, Nair KP. Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants. Finite Elem Anal Des. 2004;41(1):75–89.
  • Prakash J, Sinha P. Lubrication theory for micropolar fluids and its application to a journal bearing. Int J Eng Sci. 1975;13(3):217–232.
  • Prakash J, Sinha P. Theoretical effects of solid particles on the lubrication of journal bearings considering cavitation. Wear. 1977;41(2):233–249.
  • Sinha P, Singh C, Prasad KR. Effect of viscosity variation due to lubricant additives in journal bearings. Wear. 1981;66(2):175–188.
  • Sinha P, Singh C, Prasad KR. Viscosity variation considering cavitation in a journal bearing lubricant containing additives. Wear. 1983;86(1):43–56.
  • Bessonov NM. Generalized Reynolds equation for micropolar fluid with microrotations near surface and its application to journal bearings. J Tribol. 1994;116(3):654–657.
  • Singh C, Sinha P. The three-dimensional Reynolds equation for micro-polar-fluid-lubricated bearings. Wear. 1982;76(2):199–209.
  • Nair KP, Nair VS, Jayadas NH. Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol Int. 2007;40(2):297–305.
  • Verma S, Kumar V, Gupta KD. Analysis of multirecess hydrostatic journal bearing operating with micropolar lubricant. J Tribol. 2009;131(2):021103.
  • Rahmatabadi AD, Rashidi Meybodi R, Nekoeimehr M. Preload effects on the static performance of multi-lobe fixed profile journal bearings with micropolar fluids. Proc Inst Mech Eng, Part J: J Eng Tribol. 2011;225(8):718–730.
  • Nicodemus ER, Sharma SC. Orifice compensated multirecess hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micropolar lubricant. Tribol Int. 2011;44(3):284–296.
  • Lin TR. Hydrodynamic lubrication of journal bearings including micropolar lubricants and three-dimensional irregularities. Wear. 1996;192(1/2):21–28.
  • Das S, Guha SK, Chattopadhyay AK. On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids. Tribol Int. 2002;35(4):201–210.
  • Verma S, Jadon VK, Gupta KD. Analysis of capillary compensated hydrostatic journal bearing operating with micropolar lubricant. Ind Lubr Tribol. 2011;63(3):192–202.
  • Verma S, Kumar V, Gupta KD. Performance analysis of flexible multirecess hydrostatic journal bearing operating with micropolar lubricant. Lubr Sci. 2012;24(6):273–292.
  • Khatak P, Garg HC. Influence of micropolar lubricant on bearings performance: a review. Proc Inst Mech Eng, Part J: J Eng Tribol. 2012;226(9):775–784.
  • Khatak P, Garg HC. Investigation of the micropolar lubricant and thermal effects in the slot entry hybrid journal bearings. Proc Inst Mech Eng, Part C: J Mech Eng Sci. 2018;232(11):2103–2116.
  • Ram N, Sharma SC, Yadav S. Performance of symmetric slot-entry hybrid journal bearing in turbulent regime; May 17-21, 2015; Dallas, Texas, USA: STLE Annual Meeting & Exhibition; 2015.
  • Das S, Guha SK. Non-linear stability analysis of micropolar fluid lubricated journal bearings with turbulent effect. Ind Lubr Tribol. 2018. doi:10.1108/ILT-07-2017-0212.
  • Khatak P, Garg HC. Performance comparison of hole-entry and slot entry hybrid journal bearings considering combined influence of thermal effects and micropolar lubricant. Ind Lubr Tribol. 2018;70(6):1037–1050.
  • Ram N, Sharma SC. Analysis of orifice compensated non-recessed hole-entry hybrid journal bearing operating with micropolar lubricants. Tribol Int. 2012;52:132–143.
  • Dhawan R, Verma S. Analyzing micropolar lubrication in noncircular hybrid journal bearings. Tribol Trans. 2014;57(2):182–189.
  • Kumar R, Verma S. Effect of micropolar lubrication in non-circular hole-entry hybrid journal bearing with constant flow valve restrictor. Ind Lubr Tribol. 2016;68(6):737–751.
  • Khatri CB, Sharma SC. Behaviour of two-lobe hole-entry hybrid journal bearing system under the combined influence of textured surface and micropolar lubricant. Ind Lubr Tribol. 2017;69(6):844–862.
  • Somers AE, Howlett PC, MacFarlane DR, et al. A review of ionic liquid lubricants. Lubricants. 2013;1(1):3–21.
  • Somers AE, Howlett PC, Sun J, et al. Transition in wear performance for ionic liquid lubricants under increasing load. Tribol Lett. 2010;40(2):279–284.
  • Cai M, Liang Y, Yao M, et al. Imidazolium ionic liquids as antiwear and antioxidant additive in poly (ethylene glycol) for steel/steel contacts. ACS Appl Mater Interfaces. 2010;2(3):870–876.
  • Wang H, Lu Q, Ye C, et al. Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear. 2004;256(1/2):44–48.
  • Lu Q, Wang H, Ye C, et al. Room temperature ionic liquid 1-ethyl – 3 – hexylimidazolium – bis (trifluoromethylsulfonyl) – imide as lubricant for steel – steel contact. Tribol Int. 2004;37(7):547–552.
  • Weng L, Liu X, Liang Y, et al. Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol Lett. 2007;26(1):11–17.
  • Zhang L, Feng D, Xu B. Tribological characteristics of alkylimidazolium diethyl phosphates ionic liquids as lubricants for steel – steel contact. Tribol Lett. 2009;34(2):95–101.
  • Jiang D, Hu L, Feng D. Crown-type ionic liquids as lubricants for steel – on – steel system. Tribol Lett. 2011;41(2):417–424.
  • Zhu LY, Chen LG, Yang X, et al. Functionalized ionic liquids as lubricants for steel–steel contact. Appl Mech Mater. 2012;152–154:630–633.
  • Jiménez AE, Bermudez MD, Iglesias P, et al. 1 – N – alkyl – 3 – methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel – aluminium contacts. Wear. 2006;260(7/8):766–782.
  • Jiménez AE, Bermúdez MD. Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium – steel lubrication. Wear. 2008;265(5/6):787–798.
  • Mu Z, Zhou F, Zhang S, et al. Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminium – on – steel contact. Tribol Int. 2005;38(8):725–731.
  • Liu X, Zhou F, Liang Y, et al. Tribological performance of phosphonium based ionic liquids for an aluminium – on – steel system and opinions on lubrication mechanism. Wear. 2006;261(10):1174–1179.
  • Jimenez AE, Bermúdez MD. Ionic liquids as lubricants for steel – aluminum contacts at low and elevated temperatures. Tribol Lett. 2007;26(1):53–60.
  • Somers AE, Howlett PC, Sun J, et al. Phosphonium ionic liquids as lubricants for aluminium-steel). Proceedings of the 3rd International Conference on Tribology and Design; Algarve, Portugal. 11–13 May 2010; 273–283 (2010).
  • Somers AE, Biddulph S, Howlett PC, et al. A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys Chem Chem Phys. 2012;14(22):8224–8231.
  • Jiménez AE, Bermúdez MD. Ionic liquids as lubricants of titanium – steel contact. Tribol Lett. 2009;33(2):111–126.
  • Jiménez AE, Bermúdez MD. Ionic liquids as lubricants of titanium–steel contact. Part 2: friction, wear and surface interactions at high temperature. Tribol Lett. 2010;37(2):431–443.
  • Jiménez AE, Bermúdez MD. Ionic liquids as lubricants of titanium–steel contact. Part 3. Ti6Al4 V lubricated with imidazolium ionic liquids with different alkyl chain lengths. Tribol Lett. 2010;40(2):237–246.
  • Qu J, Truhan JJ, Dai S, et al. Ionic liquids with ammonium cations as lubricants or additives. Tribol Lett. 2006;22(3):207–214.
  • Schneider A, Brenner J, Tomastik C, et al. Capacity of selected ionic liquids as alternative EP/AW additive. Lubr Sci. 2010;22(6/7):215–223.
  • Iglesias P, Bermúdez MD, Carrion FJ, et al. Friction and wear of aluminium – steel contacts lubricated with ordered fluids – neutral and ionic liquid crystals as oil additives. Wear. 2004;256(3/4):386–392.
  • Mistry K, Fox MF, Priest M. Lubrication of an electroplated nickel matrix silicon carbide coated eutectic aluminium – silicon alloy automotive cylinder bore with an ionic liquid as a lubricant additive. Proc Inst Mech Eng, Part J: J Eng Tribol. 2009;223(3):563–569.
  • Qu J, Blau PJ, Dai S, et al. Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol Lett. 2009;35(3):181–189.
  • Qu J, Bansal DG, Yu B, et al. Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Interfaces. 2012;4(2):997–1002.
  • Yu B, Bansal DG, Qu J, et al. Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear. 2012;289:58–64.
  • Battez AH, González R, Viesca JL, et al. Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear. 2009;266(11/12):1224–1228.
  • Blanco D, Battez AH, Viesca JL, et al. Lubrication of CrN coating with ethyl – dimethyl – 2 – methoxyethylammonium tris (pentafluoroethyl) trifluorophosphate ionic liquid as additive to PAO 6. Tribol Lett. 2011;41(1):295–302.
  • Kronberger M, Pejaković V, Gabler C, et al. How anion and cation species influence the tribology of a green lubricant based on ionic liquids. Proc Inst Mech Eng, Part J: J Eng Tribol. 2012;226(11):933–951.
  • Blanco D, González R, Battez AH, et al. Use of ethyl – dimethyl – 2 – methoxyethylammonium tris (pentafluoroethyl) trifluorophosphate as base oil additive in the lubrication of TiN PVD coating. Tribol Int. 2011;44(5):645–650.
  • Pejaković V, Kronberger M, Mahrova M, et al. Pyrrolidinium sulfate and ammonium sulfate ionic liquids as lubricant additives for steel/steel contact lubrication. Proc Inst Mech Eng, Part J: J Eng Tribol. 2012;226(11):923–932.
  • Qu J, Blau PJ, Dai S, et al. Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids. Wear. 2009;267(5/8):1226–1231.
  • Mu Z, Wang X, Zhang S, et al. Investigation of tribological behavior of Al – Si alloy against steel lubricated with ionic liquids of 1 – diethylphosphonyl – n – propyl – 3 – alkylimidazolium tetrafluoroborate. J Tribol. 2008;130(3):034501.
  • Chen YX, Ye CF, Wang HZ, et al. Tribological performance of an ionic liquid as a lubricant for steel/aluminium contacts. J Synth Lubr. 2003;20(3):217–225.
  • Jimenez AE, Bermudez MD, Carrion FJ, et al. Room temperature ionic liquids as lubricant additives in steel – aluminium contacts: influence of sliding velocity, normal load and temperature. Wear. 2006;261(3/4):347–359.
  • Minami I, Inada T, Sasaki R, et al. Tribo – chemistry of phosphonium – derived ionic liquids. Tribol Lett. 2010;40(2):225–235.
  • Okaniwa T, Hayama M. The application of ionic liquids into space lubricants). 15th European Space Mechanisms & Tribology Symposium – ESMATS 2013; Noordwijk, The Netherlands. 25–27 September, 1–4 (2013).
  • Kobayashi K, Suzuki A, Fujinami Y, et al. Lubrication performance of ionic liquids as lubricants for space mechanisms under high vacuum and low temperature. Tribol Online. 2015;10(2):138–146.
  • Zhang S, Hu L, Qiao D, et al. Vacuum tribological performance of phosphonium – based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes. Tribol Int. 2013;66:289–295.
  • Totolin V, Conte M, Berriozábal E, et al. Tribological investigations of ionic liquids in ultra-high vacuum environment. Lubr Sci. 2014;26(7/8):514–524.
  • Zhou Y, Qu J. Ionic liquids as lubricant additives: a review. ACS Appl Mater Interfaces. 2017;9(4):3209–3222.
  • Xiao H. Ionic liquid lubricants: basics and applications. Tribol Trans. 2017;60(1):20–30.
  • Trachsel M, Pittini R, Dual J. Evaluation and quantification of friction using ionic liquids in small, self lubricating journal bearings. Tribol Int. 2018;122:15–22.
  • Nyberg E, Respatiningsih CY, Minami I. Molecular design of advanced lubricant base fluids: hydrocarbon-mimicking ionic liquids. RSC Adv. 2017;7(11):6364–6373.
  • Zaretsky EV. Liquid lubrication in space. Tribol Int. 1990;23(2):75–93.
  • Kałdoński T, Wojdyna PP. Liquid lubricants for space engineering and methods for their testing. Journal of KONES. 2011;18:163–184.
  • Reddecliff JM, Vohr JH. Hydrostatic bearings for cryogenic rocket engine turbopumps. J Lubr Technol. 1969;91(3):557–575.
  • Fleischauer PD, Hilton MR. Assessment of the tribological requirements of advanced spacecraft mechanisms. MRS Proceedings, Cambridge University Press. 140, 9 (1988). doi:10.1557/PROC-140-9.
  • Fleischauer PD, Hilton MR. Applications of space tribology in the USA. Tribol Int. 1990;23(2):135–139.
  • Fusaro RL, Khonsari MM. Liquid lubrication for space applications. NASA TM – 105198; 1992.
  • Masuko M, Jones Jr WR, Helmick LS. Tribological characteristics of perfluoropolyether liquid lubricants under sliding conditions in high vacuum. J Synth Lubr. 1994;11(2):111–119.
  • San Andres L. Thermohydrodynamic analysis of fluid film bearings for cryogenic applications. J Propul Power. 1995;11(5):964–972.
  • Jansen MJ, Jones WR, Pepper SV. Evaluation of an in-situ liquid lubrication system for space mechanisms using a vacuum spiral orbit tribometer. Tribol Lett. 2003;14(2):61–67.
  • Ghosh MK, Nagraj A. Rotordynamic characteristics of a multilobe hybrid journal bearing in turbulent lubrication. Proc Inst Mech Eng, Part J: J Eng Tribol. 2004;218(1):61–68.
  • Jones WR, Jansen MJ. Tribology for space applications. Proc Inst Mech Eng, Part J: J Eng Tribol. 2008;222(8):997–1004.
  • Lv M, Yang L, Wang Q, et al. Tribological performance and lubrication mechanism of solid – liquid lubricating materials in high – vacuum and irradiation environments. Tribol Lett. 2015;59(20):1–10.
  • Lv M, Wang H, Wang L, et al. The effect of space irradiation on the lubricating performance of perfluoropolyether greases in simulated space environment. Lubr Sci. 2017;29(8):567–575.
  • Zhang S, Li Y, Hu L, et al. Antiwear effect of Mo and W nanoparticles as additives for multialkylated cyclopentanes oil in vacuum. J Tribol. 2017;139(2):021607.
  • Deng X, Watson C, Weaver B, et al. Lubricant inertia in water lubricated bearings. ASME 2017 fluids engineering division summer meeting. Waikoloa, Hawaii, USA. 2017. p. 1–8. https://doi.org/10.1115/FEDSM2017-69110.
  • Deng X, Weaver B, Watson C, et al. Modeling Reichardt’s formula for eddy viscosity in the fluid film of tilting Pad thrust bearings. J Eng Gas Turbine Power. 2018;140(8):082505.
  • Deng X, Gates H, Weaver B, et al. Turbulence input parameters correction methodology in water lubricated thrust bearings. ASME turbo expo 2018: turbomachinery technical conference and exposition. Oslo, Norway. 2018. p. 1–9. https://doi.org/10.1115/GT2018-75597.
  • Deng X, Gates H, Fittro R, et al. Methodology of turbulence parameter correction in water-lubricated thrust bearings. J Fluids Eng. 2019;141(7):071104.
  • Kawada S, Watanabe S, Tsuboi R, et al. Lubrication mechanism of halogen-free ionic liquids. Tribol Online. 2017;12(4):155–161.
  • Okubo H, Kawada S, Watanabe S, et al. Tribological performance of halogen –free ionic liquids in steel – steel and DLC – DLC contacts. Tribol Trans. 2018;61(1):71–79.
  • Kawada S, Watanabe S, Sasaki S, et al. Tribochemical reactions of halogen–free ionic liquids on nascent steel surface. In: Rehman M, editor. Recent advances in ionic liquids. IntechOpen; 2018. p. 47–65. doi:10.5772/intechopen.77352.
  • Street Jr KW, Morales W, Koch VR, et al. Evaluation of vapor pressure and ultra – high vacuum tribological properties of ionic liquids. Tribol Trans. 2011;54(6):911–919.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.