137
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tribological characterization of functionally gradient composite (Cu–Fe–CeO2–Al2O3–Cg) for wind turbine brake pad

, , , , , ORCID Icon & show all
Pages 3-21 | Received 18 Jul 2022, Accepted 09 Dec 2022, Published online: 01 Feb 2023

References

  • Donahue LM, Morgan HK, Peterson WJ, et al. The carbon footprint of residency interview travel. J Grad Med Educ. 2021;13(1):89–94.
  • Ahmed WK. Mechanical modeling of wind turbine comparative study. Int J Renewable Energy Res. 2013;3(1):94–97.
  • Le B, Andrews J. Modelling wind turbine degradation and maintenance. Wind Energy. 2016;19(4):571–591.
  • Pedersen AS, Steiniche CS. Safe operation and emergency shutdown of wind turbines. Aalborg University; 2012.
  • Govindaraju M, Megalingam A, Murugasan J, et al. Investigations on the tribological behavior of functionally gradient iron-based brake pad material. Proc Inst Mech Eng C J Mech Eng Sci. 2020;234(12):2474–2486. DOI:10.1177/0954406220905858
  • Kwabena Gyimah G, Huang P, Chen D. Dry sliding wear studies of copper-based powder metallurgy brake materials. J Tribol. 2014;136(4). DOI:10.1115/1.4027477
  • Zhang X, Dong P, Chen Y, et al. Fabrication and tribological properties of copper matrix composite with short carbon fiber/reduced graphene oxide filler. Tribol Int. 2016;103:406–411. DOI:10.1016/j.triboint.2016.07.027
  • Xiao Y, Zhang Z, Yao P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int. 2018;119:585–592. DOI:10.1016/j.triboint.2017.11.038
  • Xiao Y, Zhou H, Zhang Z, et al. Investigation on speed-load sensitivity to tribological properties of copper metal matrix composites for braking application. Metals (Basel). 2020;10(7). DOI:10.3390/met10070889
  • Zhou H, Yao P, Xiao Y, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int. 2019;132:199–210. DOI:10.1016/j.triboint.2018.11.027
  • Zhang X, Zhang Y, Du S, et al. Influence of braking conditions on tribological performance of copper-based powder metallurgical braking material. J Mater Eng Perform. 2018;27(9):4473–4480. DOI:10.1007/s11665-018-3537-x
  • Mohamed AF, Osman OO, Ghazaly NM. Study of friction coefficient of wind turbine brake system under environmental conditions. Int J Adv Sci Technol. 2019;28(12):169–177. Available from: http://sersc.org/journals/index.php/IJAST/article/view/1208
  • Zhang L, Fu K, Wu P, et al. Improved braking performance of Cu-based brake pads by utilizing Cu-coated SiO2 powder. Tribol Trans. 2020;63(5):829–840. DOI:10.1080/10402004.2020.1754537
  • Kumar VV, Kumaran SS, Dhanalakshmi S. A case study focusing on investigating the tribological performance of Cu-Sn sintered brake pad of off-high road vehicles. J Compos Mater. 2020;54(27):4299–4310. DOI:10.1177/0021998320929752
  • Shabani M, Paydar MH, Zamiri R, et al. Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes. J Mater Res Technol. 2016;5(1):5–12. DOI:10.1016/j.jmrt.2015.03.002
  • Moustafa SF, Abdel-Hamid Z, Abd-Elhay AM. Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique. Mater Lett. 2002;53(4):244–249. DOI:10.1016/S0167-577X(01)00485-2
  • Mukherjee A, Maiti B, das Sharma A, et al. Correlation between slurry rheology, green density and sintered density of tape cast yttria stabilised zirconia. Ceram Int. 2001;27(7):731–739. DOI:10.1016/S0272-8842(00)00121-8
  • Callister Jr WD, Rethwisch DG. Fundamentals of materials science and engineering: an integrated approach. New York (United States of America): John Wiley & Sons; 2020.
  • Rajesh Kannan K, Govindaraju M, Vaira Vignesh R. Development of fly ash based friction material for wind turbines by liquid phase sintering technology. Proc Inst Mech Eng J J Eng Tribol. 2021;235(7):1463–1469. DOI:10.1177/1350650120963998
  • Ilangovan S, Vaira Vignesh R, Padmanaban R, et al. Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy. J Cent South Univ. 2019;26(10). DOI:10.1007/s11771-019-4200-x
  • Kannan KR, Vignesh R, Kalyan KP, et al. Tribological performance of heavy-duty functionally gradient friction material (Cu-Sn-Fe-Cg-SiC-Al2O3) synthesized by PM route. AIP Conf Proc. 2019;2128(1):20004, DOI:10.1063/1.5117916
  • Collignon M, Regheere G, Cristol A-L, et al. Braking performance and influence of microstructure of advanced cast irons for heavy goods vehicle brake discs. Proc Inst Mech Eng J J Eng Tribol. 2013;227:930–940. DOI:10.1177/1350650113484212
  • Kchaou M, Sellami A, Elleuch R, et al. Friction characteristics of a brake friction material under different braking conditions. Mater Des (1980–2015). 2013;52:533–540. DOI:10.1016/j.matdes.2013.05.015
  • Hong E, Kaplin B, You T, et al. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear. 2011;270(9):591–597. DOI:10.1016/j.wear.2011.01.015
  • Vaira Vignesh R, Padmanaban R, Datta M. Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy. Tribol-Mater Surf Interfaces. 2018;12(3):157–169.
  • Sarmadi H, Kokabi AH, seyed Reihani sm. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear. 2013;304:1–12. DOI:10.1016/j.wear.2013.04.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.