681
Views
18
CrossRef citations to date
0
Altmetric
Research Article

PersonalisedComfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents

, ORCID Icon, , , &
Article: 1852316 | Received 02 Jun 2020, Accepted 12 Nov 2020, Published online: 30 Nov 2020

References

  • Abdel-Ghany, A. M., I. M. Al-Helal, and M. R. Shady. 2013. “Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study.” Advances in Meteorology 1125.
  • Aftab, M., C. Chen, C.-K. Chau, and T. Rahwan. 2017. “Automatic HVAC Control with Real-time Occupancy Recognition and Simulation-guided Model Predictive Control in Low-cost Embedded System.” Energy and Buildings 154: 141–1147.
  • Altman, N. S. 1992. “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.” The American Statistician 46 (3): 175–185. https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
  • Auffenberg, F., S. Stein, and A. Rogers. 2015. “A Personalised Thermal Comfort Model Using A Bayesian Network.” Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) 2547 4: 2547–2553.
  • Axelrod, Y. K., and M. N. Diringer. 2008. “Temperature Management in Acute Neurologic Disorders.” Neurologic Clinics 26 (2): 585–603. Neurologic Critical Care. http://www.sciencedirect.com/science/ARTICLE/pii/S0733861908000236
  • Bin, S., and K. Han. 2010. “Indoor Thermal Comfort Pmv Index Prediction Based on pARTICLE Swarm Algorithm and Least Square Support Vector Machine.” In 2010 International Conference on Intelligent System Design and Engineering Application 1: 857–860. IEEE.
  • Boukadi, K., N. Faci, Z. Maamar, E. Ugljanin, M. Sellami, T. Baker, and M. Al-Khafajiy. 2019. “Norm-based and Commitment-driven Agentification of the Internet of Things.” Internet of Things 6: 100042.
  • Cabanac, M. 1971. “Physiological Role of Pleasure.” Science 173 (4002): 1103–1107. https://science.sciencemag.org/content/173/4002/1103
  • Candido, C., and R. de Dear. 2012. “From Thermal Boredom to Thermal Pleasure: A Brief Literature Review.” Ambiente Construido 12 (1): 81–90.
  • Carli, R., G. Cavone, S. B. Othman, and M. Dotoli. 2020. “Iot Based Architecture for Model Predictive Control of HVAC Systems in Smart Buildings.” Sensors 20 (3): 781.
  • Chatterjee, S., A. K. Kar, and S. Z. Mustafa. 2019. “Securing IoT Devices in Smart Cities of India: From Ethical and Enterprise Information System Management Perspective.” Enterprise Information Systems 1–31.
  • Chaudhuri, T., Y. C. Soh, H. Li, and L. Xie. 2017. “Machine Learning Based Prediction of Thermal Comfort in Buildings of Equatorial Singapore.” In 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 72–77.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic Minority Over-sampling Technique.” Journal of Artificial Intelligence Research 16: 321–357.
  • De Dear, R. 2012. “Macquarie.” University’s ASHRAE RP-884 Adaptive Model Project–Data Downloader.
  • De Dear, R., and G. S. Brager. 1998. “Developing an Adaptive Model of Thermal Comfort and Preference.” ASHRAE Transactions 104 (1): 145–167.
  • De Dear, R. J., and G. S. Brager. 2002. “Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55.” Energy and Buildings 34 (6): 549–561.
  • Dedear, R. J., and A. Auliciems. 1985. “Validation of the Predicted Mean Vote Model of Thermal Comfort in Six Australian Field Studies.” ASHRAE Transactions 91 (2B): 452–468.
  • DeGroot, D. W., and W. Larry Kenney. 2007. “Impaired Defense of Core Temperature in Aged Humans during Mild Cold Stress.” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292 (1): R103–R108.
  • Deng, L., and D. Yu. 2014. “Deep Learning: Methods and Applications.” Foundations and Trends® in Signal Processing 7 (3–4): 197–387.
  • Djongyang, N., R. Tchinda, and D. Njomo. 2010. “Thermal Comfort: A Review Paper.” Renewable and Sustainable Energy Reviews 14 (9): 2626–2640.
  • Doherty, T., and E. A. Arens. 1988. “Evaluation of the Physiological Bases of Thermal Comfort Models.” ASHRAE Transactions 94 (Part 1): 15.
  • Domingos, P., and G. Hulten. 2000. “Mining High-speed Data Streams.” In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, Boston, Massachusetts, USA, 71–80.
  • Erickson, V. L., and A. E. Cerpa. 2012. “Thermovote: Participatory Sensing for Efficient Building Hvac Conditioning.” In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, New York, United States, 9–16.
  • Fanger, P. O., and E. W. Shaw. 1972. “Thermal Comfort: Analysis and Applications in Environmental Engineering.” Royal Society of Health Journal 92 (3): 164.
  • Fanger, P. O. 1970. “Thermal Comfort. Analysis and Applications in Environmental Engineering.” Thermal Comfort. Analysis and Applications in Environmental Engineering.
  • Farhan, A. A., K. Pattipati, B. Wang, and P. Luh. 2015. “Predicting Individual Thermal Comfort Using Machine Learning Algorithms.” In 2015 IEEE International Conference on Automation Science and Engineering (CASE), 708–713. Gothenburg, Sweden: IEEE.
  • Gao, P. X., and S. Keshav. 2013. “Optimal Personal Comfort Management Using SPOT+.” In Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, Roma, Italy, 1–8.
  • Ghobaei-Arani, M., A. A. Rahmanian, M. Shamsi, and A. R. Kenari. 2018. “A Learning-based Approach for Virtual Machine Placement in Cloud Data Centers.” International Journal of Communication Systems 31 (8): e3537.
  • Hang-yat, L. A., and D. Wang. 2013. “Carrying My Environment with Me: A Participatory-sensing Approach to Enhance Thermal Comfort.” In Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, Roma, Italy, 1–8.
  • Hellwig, R. T., D. Teli, M. Schweiker, J.-H. Choi, M. C. Jeffrey Lee, R. Mora, R. Rawal, Z. Wang, and F. Al-Atrash. 2019. “A Framework for Adopting Adaptive Thermal Comfort Principles in Design and Operation of Buildings.” Energy and Buildings 205: 109476.
  • Ho, T. K. 1995. “Random Decision Forests.” In Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1, 278–282. Montreal, Quebec, Canada: IEEE.
  • Hulten, G., L. Spencer, and P. Domingos. 2001. “Mining Time-changing Data Streams.” In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, United States, 97–106.
  • Jang, H., B. Kang, K. Cho, K. H. Jang, and S. Park. 2019. “Design and Implementation of IoT-based HVAC and Lighting System for Energy Saving.” In MATEC Web Conference 260, 02012. Vienna, Austria. doi:https://doi.org/10.1051/matecconf/201926002012.
  • Javed, A. R., M. U. Sarwar, M. O. Beg, M. Asim, T. Baker, and H. Tawfik. 2020a. “A Collaborative Healthcare Framework for Shared Health- Care Plan with Ambient Intelligence.” Human-centric Computing and Information Sciences 10 (1): 1–21.
  • Javed, A. R., M. U. Sarwar, S. Khan, C. Iwendi, M. Mittal, and N. Kumar. 2020b. “Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.” Sensors 20 (8): 2216.
  • Jia, G., Y. Zhu, G. Han, S. Chan, and L. Shu. 2019. “STC: An Intelligent Trash Can System Based on Both NB-IoT and Edge Computing for Smart Cities.” Enterprise Information Systems 1–17.
  • Jnr, B. A. n.d. “Managing Digital Transformation of Smart Cities through Enterprise Architecture–a Review and Research Agenda.”
  • Kim, J., Y. Zhou, S. Schiavon, P. Raftery, and G. Brager. 2018. “Personal Comfort Models: Predicting Individuals’ Thermal Preference Using Occupant Heating and Cooling Behavior and Machine Learning.” Building and Environment 129: 96–106.
  • Kwok, A. G., and N. B. Rajkovich. 2010. “Addressing Climate Change in Comfort Standards.” Building and Environment 45 (1): 18–22.
  • Laing, S., and K. Niklas. 2020. “Comfort-as-a-Service: Designing a User-Oriented Thermal Comfort Artifact for Office Buildings.” arXiv Preprint arXiv: 2004.03323.
  • Lee, S., and P. Karava. 2020. “Towards Smart Buildings with Self-tuned Indoor Thermal environments-A Critical Review.” Energy and Buildings 110172.
  • Li, H., J. Harvey, and A. Kendall. 2013. “Field Measurement of Albedo for Different Land Cover Materials and Effects on Thermal Performance.” Building and Environment 59: 536–546.
  • Lu, S., W. Wang, S. Wang, and E. C. Hameen. 2019. “Thermal Comfort-Based Personalized Models with Non-Intrusive Sensing Technique in Office Buildings.” Applied Sciences 9 (9): 1768.
  • Luo, M., Z. Wang, K. Kevin, B. Cao, Y. Zhai, and X. Zhou. 2018. “Human Metabolic Rate and Thermal Comfort in Buildings: The Problem and Challenge.” Building and Environment 131: 44–52.
  • Luo, M., J. Xie, Y. Yan, K. Zhihao, Y. Peiran, Z. Wang, and J. Zhang. 2020. “Comparing Machine Learning Algorithms in Predicting Thermal Sensation Using ASHRAE Comfort Database II.” Energy and Buildings 210: 109776.
  • Maamar, Z., M. Sellami, T. Baker, S. Elnaffar, and M. Alshibly. 2020. “Atomicity in the Internet of Transactional Things (Io2t).” In Workshops of the International Conference on Advanced Information Networking and Applications, 46–55. Cham: Springer.
  • Mooren, F. C. ed. 2012. Skin Wettedness, 790. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:https://doi.org/10.1007/978-3-540-29807-63041.
  • Mui, K. W., T. W. Tsang, and L. T. Wong. 2020. “Bayesian Updates for Indoor Thermal Comfort Models.” Journal of Building Engineering 29: 101117.
  • Ng, C. K., C. H. Wu, K. L. Yung, W. H. Ip, and T. Cheung. 2018. “A Semantic Similarity Analysis of Internet of Things.” Enterprise Information Systems 12 (7): 820–855.
  • Ngarambe, J., G. Y. Yun, and M. Santamouris. 2020. “The Use of Artificial Intelligence (AI) Methods in the Prediction of Thermal Comfort in Buildings: Energy Implications of AI-based Thermal Comfort Controls.” Energy and Buildings 211: 109807.
  • Nisar, T. M., G. Prabhakar, and L. Strakova. 2019. “Social Media Information Benefits, Knowledge Management and Smart Organizations.” Journal of Business Research 94: 264–272.
  • Otoum, S., B. Kantarci, and H. Mouftah. 2019a. “Empowering Reinforcement Learning on Big Sensed Data for Intrusion Detection.” In Icc 2019-2019 IEEE international conference on communications (ICC), 1–7. Shanghai, China: IEEE.
  • Otoum, S., B. Kantarci, and H. T. Mouftah. 2019b. “On the Feasibility of Deep Learning in Sensor Network Intrusion Detection.” IEEE Networking Letters 1 (2): 68–71.
  • Rana, R., B. Kusy, J. Wall, and H. Wen. 2015. “Novel Activity Classification and Occupancy Estimation Methods for Intelligent HVAC (Heating, Ventilation and Air Conditioning) Systems.” Energy 93: 245–255. http://www.sciencedirect.com/science/ARTICLE/pii/S0360544215011883
  • Reddy, G. T., M. Praveen Kumar Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava, and T. Baker. 2020. “Analysis of Dimensionality Reduction Techniques on Big Data.” IEEE Access 8: 54776–54788.
  • RM, S. P., S. Bhattacharya, P. K. R. Maddikunta, S. R. K. Somayaji, K. Lakshmanna, R. Kaluri, A. Hussien, and T. R. Gadekallu. 2020. “Load Balancing of Energy Cloud Using Wind Driven and Firefly Algorithms in Internet of Everything.” Journal of Parallel and Distributed Computing 142 (2020): 16–26.
  • Safara, F., A. Souri, T. Baker, I. A. Ridhawi, and M. Aloqaily. 2020. “PriNergy: A Priority-based Energy-efficient Routing Method for IoT Systems.” The Journal of Supercomputing 76: 1–18.
  • Sarwar, M. U., and A. R. Javed. 2019. “Collaborative Health Care Plan through Crowdsource Data Using Ambient Application.” In 2019 22nd International Multitopic Conference (INMIC), 1–6. Islamabad, Pakistan: IEEE.
  • Schweiker, M., X. Fuchs, S. Becker, M. Shukuya, M. Dovjak, M. Hawighorst, and J. Kolarik. 2017. “Challenging the Assumptions for Thermal Sensation Scales.” Building Research & Information 45 (5): 572–589.
  • Tolles, J., and W. J. Meurer. 2016. “Logistic Regression: Relating Patient Char- Acteristics to Outcomes.” JAMA 316 (5): 533–534. doi:https://doi.org/10.1001/jama.2016.7653.
  • Valancius, R., A. Jurelionis, and V. Dorosevas. 2013. “Method for Cost-benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings.” Energies 6 (9): 4591–4606.
  • Van Hoof, J. 2008. “Forty Years of Fanger’s Model of Thermal Comfort: Comfort for All?” Indoor Air 18 (3): 182–201.
  • Van Hoof, J., and J. L. M. Hensen. 2007. “Quantifying the Relevance of Adaptive Thermal Comfort Models in Moderate Thermal Climate Zones.” Building and Environment 42 (1): 156–170.
  • von Grabe, J. 2016. “Potential of Artificial Neural Networks to Predict Thermal Sensation Votes.” Applied Energy 161: 412–424.
  • Wyon, D. P., I. Andersen, and G. R. Lundqvist. 1981. “Chapter 16 the Effects of Moderate Heat Stress on Mental Performance**This Study Was Supported by Statens Almindelige Vidensk- Absfond, Statens Laegevidens-kabelibe Fond, Statens Teknisk Videnskabelige Fond, Copenhagen, Denmark and by Statens Institut För Byggnadsforskning, Stockholm, Sweden.” In Bioengineering, Thermal Physiology and Comfort, edited by K. Cena and J. A. Clark, 251–267. Washington, USA: Elsevier. Vol. 10 of Studies in Environmental Science. http://www.sciencedirect.com/science/ARTICLE/pii/S0166111608710938
  • Zhang, N., B. Cao, Z. Wang, Y. Zhu, and B. Lin. 2017. “A Comparison of Winter Indoor Thermal Environment and Thermal Comfort between Regions in Europe, North America, and Asia.” Building and Environment 117: 208–217.
  • Zhang, S., Y. Cheng, M. O. Oladokun, W. Yuxin, and Z. Lin. 2020. “Improving Predicted Mean Vote with Inversely Determined Metabolic Rate.” Sustainable Cities and Society 53: 101870.
  • Zhao, Y., P. V. Genovese, and L. Zhixing. 2020. “Intelligent Thermal Comfort Controlling System for Buildings Based on IoT and AI.” Future Internet 12 (2): 30.
  • Zhou, X., X. Ling, J. Zhang, B. Niu, M. Luo, G. Zhou, and X. Zhang. 2020. “Data-driven Thermal Comfort Model via Support Vector Machine Algorithms: Insights from ASHRAE RP-884 Database.” Energy and Buildings 211: 109795.
  • Zhou, Y., L. Dan, and C. Spanos. 2015. “Learning Optimization Friendly Comfort Model for HVAC Model Predictive Control.” 2015 IEEE International Conference on Data Mining Workshop (ICDMW) 11: 430–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.