4,464
Views
17
CrossRef citations to date
0
Altmetric
RESEARCH LETTER

Environmentally green approach to synthesize azo dyes based on 1-naphthol using nano BF3·SiO2 under solvent-free conditions

, &
Pages 393-403 | Received 12 Nov 2013, Accepted 23 Sep 2014, Published online: 03 Nov 2014

References

  • Vibhute, A.; Mokle, S.; Karamunge, K.; Gurav, V.; Vibhute, Y. A Simple and Efficient Method for Solvent-Free Iodination of Hydroxylated Aromatic Aldehydes and Ketones Using Iodine and Iodic Acid by Grinding Method. Chin. Chem. Lett. 2010, 21, 914–918.
  • Tretyakov, A.N.; Krasnokutskaya, E.A.; Gorlushko, D.A.; Ogorodnikov, V.D.; Filimonov, V.D. A New One-Pot Solvent-Free Synthesis of Pyridinyl Tosylates via Diazotization of Aminopyridines. Tetrahedron Lett. 2011, 52, 85–87.
  • Carlier, L.; Baron, M.; Chamayou, A.; Couarraze, G. Use of Co-grinding as a Solvent-Free Solid State Method to Synthesize Dibenzophenazines. Tetrahedron Lett. 2011, 52, 4686–4689.
  • Rani, R.; Arya, S.; Kilaru, P.; Sondhi, S.M. An Expeditious, Highly Efficient, Catalyst and Solvent-Free Synthesis of 9,10-Dihydro-anthracene-9,10-α,β-succiniimide Derivatives. Green Chem. Lett. Rev. 2012, 5, 545–575.
  • Sato, K.; Ozu, T.; Takenaga, N. Solvent-Free Synthesis of Azulene Derivatives via Passerini Reaction by Grinding. Tetrahedron Lett. 2013, 54, 661–664.
  • Talukdar, D.; Thakur, A.J. A Green Synthesis of Symmetrical Bis(indol-3-yl)methanes Using Phosphate-Impregnated Titania Catalyst under Solvent Free Grinding Conditions. Green Chem. Lett. Rev. 2013, 6, 55–61.
  • Kumar, S. An Improved One-Pot and Eco-Friendly Synthesis of Aurones under Solvent-Free Conditions. Green Chem. Lett. Rev. 2014, 7, 95–99.
  • Brahmachari, G.; Das, S. L-Proline Catalyzed Multicomponent One-Pot Synthesis of Gem-Diheteroarylmethane Derivatives Using Facile Grinding Operation under Solvent-Free Conditions at Room Temperature. RSC Adv. 2014, 4, 7380–7388.
  • Clark, J.H. Catalysis of Organic Reactions by Supported Inorganic Reagents; VCH: New York, 1994.
  • Okuhara, T. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102, 3641–3666.
  • Freeman, H.S.; Peters, A.T. Colorants for Non-Textile Applications; Elsevier Science B.V.: Amsterdam, 2000.
  • Gregory, P. Ink Jet Printing. In High Technology Applications of Organic Colorants; Plenum: New York, 1991; Chapter 9.
  • Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Colorimetric Chiral Recognition by a Molecular Sensor. Nature. 1996, 382, 522–524.
  • Steinsträsser, R.; Pohl, L. Chemistry and Applications of Liquid Crystals. Angew. Chem., Int. Ed. 1973, 12, 617–630.
  • He, Y.; Gu, X.; Guo, M.; Wang, X. Dendritic Azo Compounds as a New Type Amorphous Molecular Material with Quick Photoinduced Surface-Relief-Grating Formation Ability. Opt. Mater. 2008, 31, 18–27.
  • Pieraccini, S.; Masiero, S.; Spada, G.P.; Gottarelli, G.A. A New Axially-Chiral Photochemical Switch. Chem. Commun. 2003, 9, 598–599.
  • Tatsuta, M.; Kitao, T. Reagent for Detecting and Diagnosing Cancer, Publication No. JP 01–207247 A, 1989.
  • Aszalos, A.; Weaver, J.L.; Pine, P.S. Methods of Using Azo Dyes and Their Derivatives. US Patent 5,468,469, November 21, 1995.
  • Bahulayan, D.; John, L.; Lalithambika, M. Modified Clays as Efficient Acid–Base Catalyst Systems for Diazotization and Diazo Coupling Reactions. Synth. Commun. 2003, 33, 863–869.
  • Dabbagh, A.H.; Teimouri, A.; Najafi Chermahini, A. Green and Efficient Diazotization and Diazo Coupling Reactions on Clays. Dyes Pigm. 2007, 73, 239–244.
  • Zarei, A.; Hajipour, A.R.; Khazdooz, L.; Mirjalili, B.F.; Najafi Chermahini, A. Rapid and Efficient Diazotization and Diazo Coupling Reactions on Silica Sulfuric Acid under Solvent-Free Conditions. Dyes Pigm. 2009, 81, 240–244.
  • Jortner, J.; Rao, C.N.R. Nanostructured Advanced Materials. Perspectives and Directions. Pure Appl. Chem. 2002, 74, 1491–1506.
  • Sadeghi, B.; Mirjalili, B.F.; Hashemi, M.M. BF3·SiO2: An Efficient Heterogeneous Alternative for Regio-Chemo and Stereoselective Claisen-Schmidt Condensation. J. Iran. Chem. Soc. 2008, 5, 694–698.
  • Mirjalili, B.F.; Bamoniri, A.; Akbari, A. BF3-SiO2: An Efficient Alternative for the Synthesis of 14-Aryl or Alkyl-14H-dibenzo[a,j]xanthenes. Tetrahedron Lett. 2008, 49, 6454–6456.
  • Sadeghi, B.; Mirjalili, B.F.; Hashemi, M.M. BF3-SiO2: An Efficient Reagent System for the One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles. Tetrahedron Lett. 2008, 49, 2575–2577.
  • Reddy, M.V.; Dindulkar, S.D.; Jeong, Y.T. BF3·SiO2-Catalyzed One-Pot Synthesis of α-Aminophosphonates in Ionic Liquid and Neat Conditions. Tetrahedron Lett. 2011, 52, 4764–4767.
  • Dindulkar, S.D.; Parthiban, P.; Jeong, Y.T. BF3·SiO2 Is a Simple and Efficient Lewis Acid Catalyst for the One-Pot Synthesis of Polyfunctionalized Piperidin-4-ones. Monatsh. Chem. 2012, 143, 113–118.
  • Mirjalili, B.F.; Bamoniri, A.; Akbari, A. One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones (Thiones) Promoted by Nano-BF3·SiO2. J. Iran. Chem. Soc. 2011, 8, 135–140.
  • Mirjalili, B.F.; Bamoniri, A.; Akbari, A. Nano-BF3·SiO2: A Reusable and Eco-Friendly Catalyst for Synthesis of Quinoxalines. Chem. Heterocycl. Compd. 2011, 47, 487–491.
  • Rajasekhar, D.; Rao, D.S.; Srinivasulu, D.; Raju, C.N.; Balaji, M. Microwave Assisted Synthesis of Biologically Active α-Aminophosphonates Catalyzed by Nano-BF3·SiO2 under Solvent-Free Conditions. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 1017–1025.
  • Mirjalili, B.F.; Bamoniri, A.; Karimi Zarchi, M.A.; Emtiazi, H. Zr(HSO4)4/SiO2: An Effective Heterogeneous Alternative for One-Pot Synthesis of β-Acetamido Ketones. J. Iran. Chem. Soc. 2010, 7, 95–99.
  • Sadeghi, B.; Mirjalili, B.F.; Bidaki, S.; Ghasemkhani, M. SbCl5.SiO2: An Efficient Alternative for One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles in Solvent or under Solvent-Free Condition. J. Iran. Chem. Soc. 2011, 8, 648–652.
  • Mirjalili, B.F.; Bamoniri, A.; Akbari, A.; Taghavinia, N. Nano-TiO2: An Eco-Friendly and Re-Usable Catalyst for the Synthesis of 14-Aryl or Alkyl-14H-dibenzo[a,j]xanthenes. J. Iran. Chem. Soc. 2011, 8, 129–134.
  • Bamoniri, A.; Mirjalili, B.F.; Jafari, A.A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5·SiO2. Iran. J. Catal. 2012, 2, 73–76.
  • Mirjalili, B.F.; Bamoniri, A.; Mirhoseini, M.A. Nano-SnCl4·SiO2 – A Versatile and Efficient Catalyst for Synthesis of 14-Aryl- or 14-Alkyl-14H-dibenzo [a,j]xanthenes. Chem. Heterocycl. Compd. 2012, 48, 856–860.
  • Mirjalili, B.F.; Bamoniri, A.; Zamani, L. Nano-TiCl4/SiO2: An Efficient and Reusable Catalyst for the Synthesis of Tetrahydrobenzo[a]xanthenes-11-ones. Lett. Org. Chem. 2012, 9, 338–343.
  • Mirjalili, B.F.; Bamoniri, A.; Zamani, L. One-Pot Synthesis of 1, 2, 4, 5-Tetrasubstitutedimidazoles Promoted by Nano-TiCl4.SiO2. Sci. Iran. 2012, 19, 565–568.
  • Bamoniri, A.; Mirjalili, B.F.; Nazemian, S. Nano Silica Phosphoric Acid: An Efficient Catalyst for the One-Pot Synthesis of 1, 2, 4, 5-Tetrasubstituted Imidazoles. J. Nanostruct. 2012, 2, 101–105.
  • Bamoniri, A.; Mirjalili, B.F.; Nazemian, S. Nano-Silica Phosphoric Acid: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones (Thiones) under Solvent-Free or Sonication Conditions. Iran. J. Catal. 2012, 2, 17–21.
  • Bamoniri, A.; Mirjalili, B.F.; Nazemian, S. Microwave-Assisted Solvent-Free Synthesis of 14-Aryl/Alkyl-14H-dibenzo[a,j]xanthenes and Tetrahydrobenzo[a] xanthen-11-ones Catalyzed by Nano Silica Phosphoric Acid. Curr. Chem. Lett. 2013, 2, 27–34.
  • Wilson, K.; Clark, J.H. Synthesis of a Novel Supported Solid Acid BF3 Catalyst. Chem. Commun. 1998, (19), 2135–2136.
  • Toda, F.; Tanaka, K. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074.
  • Tanaka, K. Solvent-Free Organic Synthesis; Wiley: New York, 2003.
  • Hihara, T.; Okada, Y.; Morita, Z. Azo-Hydrazone Tautomerism of Phenylazonaphthol Sulfunates and Their Analysis Using the Semiempirical Molecular Orbital PM5 Method. Dyes Pigm. 2003, 59, 25–41.
  • Alarcon, S.H.; Olivieri, A.C.; Sanz, D. Claramunt, R.M.; Elguero, J. Substituent and Solvent Effects on the Proton Transfer Equilibrium in Anils and Azo Derivatives of Naphthol. Multinuclear NMR Study and Theoretical Calculations. J. Mol. Struct. 2004, 705, 1–9.
  • Ogoleva, L.N.; Stepanov, B.I. The Isomer Ratio in Azo Coupling. Ž. Org. Chim. 1965, 1, 2083–2086.
  • Morgan, K.J.; Infrared Spectra and Structure of Arylazonaphthols. J. Chem. Soc. 1961, 2151–2159.
  • Charrier, G.; Ferreri, G. Gazz. Chim. Ital. 1914, 44, 234.
  • Bamberger, E.; Meimberg, F. Einige Weitere Beobachtungen über Azofarbstoffe. Chem. Ber. 1895, 28, 1887–1897.
  • Brode, W.R.; Herdle, L.E. The Relation Between the Absorption Spectra and the Chemical Constitution of Dyes. XIX. Mono-and Poly-Azo Dyes with a Single Auxochrome. J. Org. Chem. 1941, 6, 713–721.
  • Bamberger, E. Ueber Die Einwirkung von Alphylhydrazinen auf β-Naphtochinon. Chem. Ber. 1897, 30, 513–516.
  • Kropacova, H.; Panchartek, J.; Sterba V.; Valter, K. Kinetics and Mechanism of Diazo Coupling. XVII. Coupling Kinetics of Substituted Benzenediazonium Cations with 1-Naphthol and 1-Naphthol-4-sulfonic Acid. Collect. Czech. Chem. Commun. 1970, 35, 3287–3295.