1,918
Views
28
CrossRef citations to date
0
Altmetric
RESEARCH LETTER

Cucurbita pepo L. extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes

, , , , , , , , & show all
Pages 39-47 | Received 12 Dec 2014, Accepted 05 Mar 2015, Published online: 07 Apr 2015

References

  • Anderson, C.W.N.; Bhatti, S.M; Gardea-Torresdey, J.; Parson, J. In Vivo Effect of Copper and Silver on Synthesis of Gold Nanoparticles inside Living Plants. Sust. Chem. Eng. 2013, 1, 640–648.
  • Bali, R.; Harris, A.T. Biogenic Synthesis of Au Nanoparticles Using Vascular Plants. Ind. Eng. Chem. Res. 2010, 49, 12762–12772.
  • Baruwati, B.; Varma, R.S. High Value Products from Waste: Grape Pomace Extract-A Three-in-one Package for the Synthesis of Metal Nanoparticles. Chem. Sus. Chem. 2009, 2, 1041–1044.
  • Betts, K. A Greener Route to Gold Nanoparticles. Environ. Sci. Technol. 2005, 39, 104–105.
  • Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward Greener Nanosynthesis. Chem. Rev. 2007, 107, 2228–2269.
  • Daniel, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-size-related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Del Bubba, M.; Ancillotti, C.; Checchini, L.; Ciofi, L.; Fibbi, D.; Gonnelli, C.; Mosti, S. Chromium Accumulation and Changes in Plant Growth, Selected Phenolics and Sugars of Wild Type and Genetically Modified Nicotiana langsdorffii. J. Haz. Mat. 2013, 262, 394–403.
  • Dong, S.; Zeng, M.; Wang, D.; Liu, Z.; Zhao, Y.; Yang, H. Antioxidant and Biochemical Properties of Protein Hydrolysates Prepared from Silver Carp (Hypophthalmichthys molitrix). Food. Chem. 2008, 107, 1485–1493.
  • Doumett, S.; Fibbi, D.; Cincinelli, A.; Giordani, E.; Nin, S.; Del Bubba, M. Comparison of Nutritional and Nutraceutical Properties in Cultivated Fruits of Fragaria vesca L. Produced in Italy. Food. Res. Int. 2011, 44, 1209–1216.
  • Duressa, D.; Soliman, K.; Cebert, E. Protein and Polyphenol Profile Changes in Soybean Roots under Aluminum Stress. Int. J. Plant. Physiol. Biochem. 2010, 2, 38–45.
  • Eckelman, M.J.; Zimmerman, J.B.; Anastas, P.T. Toward Green Nano. J. Ind. Ecol. 2008, 12, 316–328.
  • Faramazi, M.A., Sadighi, A. Insights into Biogenic and Chemical Production of Inorganic Nanomaterials and Nanostructures. Adv. Colloide. Interface. Sci. 2013, 189190, 1–20.
  • Ghule, K.; Ghule, A.V.; Liu, J.Y.; Ling, Y.C. Microscale Size Triangular Gold Prisms Synthesized using Bengal Gram beans (cicer arietinum l.) Extract and HAuCl4·3H2O: A Green Biogenic Approach. J. Nanosci Nanotechnol. 2006, 6, 3746–3751.
  • Giordani, E.; Doumett, S.; Nin, S.; Del Bubba, M. Selected Primary and Secondary Metabolites in Fresh Persimmon (Diospyros kaki Thunb.): A Review of Analytical Methods and Current Knowledge of Fruit Composition and Health Benefits. Food. Res. Int. 2011, 44, 1752–1767.
  • Girotti, S.; Eremin, S.; Montoya, A.; Moreno, MJ; Caputo, P; D’Elia, M; Ripani, L; Romolo, FS; Maiolini, E. Development of a Chemiluminescent ELISA and a Colloidal Gold-based LFIA for TNT Detection. Anal Bioanal Chem. 2010, 396, 687–695.
  • Gluhoi, A.C.; Lin, S.D.; Nieuwenhuys, B.E. The Beneficial Effect of the Addition of Base Metal Oxides to Gold Catalysts on Reactions Relevant to Air Pollution Abatement. Catal. Today. 2004, 90, 175.
  • Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L.M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.
  • Hall, J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, 53, 1–11.
  • Hoagland, D.R.; Arnon, D.I. The Water-culture Method for Growing Plants without Soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–39.
  • Hughes, M.D.; Xu, Y.J.; Jenkins, P.; Mcmorn, P.; Landon, P.; Enache, D.L.; Carley, A.F.; Attard, G.A.; Hutchings, G.J.; King, F.; Stitt, E.H.; Johnston, P.; Griffin, K.; Kiely, C.J. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132.
  • Iravani, S. Green Synthesis of Metal Nanoparticles using Plants. Green. Chem. 2011, 13, 2638–2650.
  • Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, 2001.
  • Kharissova, O.V.; Dias, H.V.; Kharisov, B.I.; Perez, B.O.; Perez, V.M. The Greener Synthesis of Nanoparticles. Trends. In. Biotechnol. 2013, 31, 240–248.
  • Kumar, V.; Kumar Yadav, S. Plant-mediated Synthesis of Silver and Gold Nanoparticles and Their Applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157.
  • Lavid, N.; Schwartz, A.; Yarden, O.; Tel-Or, E. The Involvement of Polyphenols and Peroxidase Activities in Heavy-metal Accumulation by Epidermal Glands of the Waterlily (Nymphaeaceae). Planta. 2001, 212, 323–331.
  • Li, M.; Gou, H.L.; Al-Ogaidi, I.; Wu, N.Q. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS. Sus. Chem. Eng. 2013, 1, 713–723.
  • Liu, Z.P.; Jenkins, S.J.; King, D.A. Origin and Activity of Oxidized Gold in Water-gas-shift Catalysis. Phys. Rev. Lett. 2005, 94, 196102.
  • Marschner, H. Mineral Nutrition of Higher Plants; Oxford University Press: London, 1995.
  • Meharg, A. Mechanisms of Plant Resistance to Metal and Metalloid Ions and Potential Biotechnological Applications. Plant. Soil. 2005, 274, 163–174.
  • Mohan Kumar, K.; Mandal, B.K.; Kiran Kumar, H.A.; Maddinedi, S.B. Green Synthesis of Size Controllable Gold Nanoparticles. Spectrochim. Acta. Part. A: Mol. Biomol. Spectr. 2013, 116, 539–545.
  • Montes, M.O.; Mayoral, A.; Deepak, F.L.; Parsons, J.G; Jose-Yacaman, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Anisotropic Gold Nanoparticles and Gold Plates Biosynthesis using Alfalfa Extracts. J. Nanop. Res. 2011, 13, 311–3121.
  • Nadagouda, M.N.; Varma, R.S. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature using Coffee and Tea Extract. Green. Chem. 2008, 10, 859–862.
  • Narayanan, K.B.; Sakthivel, N. Green Synthesis of Biogenic Metal Nanoparticles by Terrestrial and Aquatic Phototrophic and Heterotrophic Eukaryotes and Biocompatible Agents. Adv. Colloid. Interface. Sci. 2011, 169, 59–79.
  • Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends. In. Plant. Sci. 1997, 2, 152–159.
  • Roduner, E. Nanoscopic Material: Size Dependent Phenomena; RSC Publishing: Cambridge, UK, 2006.
  • Shabnam, N.; Pardha-Saradhi, P.; Sharmila, P. Phenolics Impart Au3+-Stress Tolerance to Cowpea by Generating Nanoparticles. PlosOne. 2014, 9, e85242.
  • Song, J.Y.; Yang, H.K.; Kim, B.S. Biological Synthesis of Gold Nanoparticles using MAGNOLIA kobus and Diopyros kaki Leaf Extracts. Process Biochem 2009, 44, 1133–1138.
  • Sujitha, M.V.; Kannan, S. Green Synthesis of Gold Nanoparticles using Citrus Fruits (Citrus limon, Citrus reticulate and Citrus sinensis) Aqueous Extract and Its Characterization. Spectrochim. Acta. Part A: Mol. Biomol. Spectr. 2013, 102, 15–23.
  • The Royal Society & The Royal Academy of Engineering. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. 2004. http://www.nanotec.org.uk/finalReport.htm (accessed Mar 20, 2015).
  • Thompson, D.T. Using Gold Nanoparticles for Catalysis. Nanotoday. 2007, 2, 40–43.
  • Varma, R.S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128.
  • Xia, T.; Li, N.; Nel, A.E. Potential Health Impact of Nanoparticles. Annu. Rev. Public. Health. 2009, 30, 137–150.
  • Yan, Z.Z.; Tam, N.F. Temporal Changes of Polyphenols and Enzyme Activities in Seedlings of Kandelia obovata Under Lead and manganese Stresses. Mar. Pollut. Bull. 2011, 63, 438–444.