3,141
Views
21
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Modified chemical coprecipitation of magnetic magnetite nanoparticles using linear–dendritic copolymers

&
Pages 235-240 | Received 29 Apr 2017, Accepted 19 Jul 2017, Published online: 07 Aug 2017

References

  • Zhu, X.; Zhang, L.; Fu, A.; Yuan, H. Efficient Purification of Lysozyme from Egg White by 2-Mercapto-5-benzimidazolesulfonic Acid Modified Fe3O4/Au Nanoparticles. Mater. Sci. Eng. C. 2016, 59, 213–217. doi: 10.1016/j.msec.2015.10.009
  • Hekmatara, H.; Seifi, M.; Forooraghi, K. Microwave Absorption Property of Aligned MWCNT/Fe3O4. J. Magn. Magn. Mater. 2013, 346, 186–191. doi: 10.1016/j.jmmm.2013.06.032
  • Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored Functionalization of Iron Oxide Nanoparticles for MRI, Drug Delivery, Magnetic Separation and Immobilization of Biosubstances. Biotechnol. Adv. 2015, 33, 1162–1176. doi: 10.1016/j.biotechadv.2015.02.003
  • Lin, C.L.; Lee, C.F.; Chiu, W.Y. Preparation and Properties of Poly(Acrylic Acid) Oligomer Stabilized Superparamagnetic Ferrofluid. J. Colloid Interface Sci. 2005, 291, 411–420. doi: 10.1016/j.jcis.2005.05.023
  • Li, N.; Hao, X.; Kang, B.H.; Xu, Z.; Shi, Y.; Li, N.B.; Luo, H.Q. Enzyme-free Fluorescent Biosensor for the Detection of DNA Based on Core-Shell Fe3O4 Polydopamine Nanoparticles and Hybridization Chain Reaction Amplification. Biosens. Bioelectron. 2016, 77, 525–529. doi: 10.1016/j.bios.2015.10.004
  • Safari, J.; Zarnegar, Z. Sulfamic Acid-functionalized Magnetic Fe3O4 Nanoparticles as Recyclable Catalyst for Synthesis of Imidazoles Under Microwave Irradiation. J. Chem. Sci. 2013, 125, 835–841. doi: 10.1007/s12039-013-0462-2
  • Safari, J.; Zarnegar, Z.; Heydarian, M. Magnetic Fe3O4 Nanoparticles as Efficient and Reusable Catalyst for the Green Synthesis of 2-Amino-4H-chromene in Aqueous Media. Bull. Chem. Soc. Jan. 2012, 85, 1332–1338. doi: 10.1246/bcsj.20120209
  • Safari, J.; Zarnegar, Z. A Highly Efficient Magnetic Solid Acid Catalyst for Synthesis of 2,4,5-Trisubstituted Imidazoles Under Ultrasound Irradiation. Ultrasonic. Sonochem. 2013, 20, 740–746. doi: 10.1016/j.ultsonch.2012.10.004
  • Wang, C.; Huang, L.; Song, S.; Saif, B.; Zhou, Y.; Dong, C.; Shuang, S. Targeted Delivery and pH-Responsive Release of Stereoisomeric Anti-cancer Drugs Using β-Cyclodextrin Assemblied Fe3O4 Nanoparticles. Appl. Surf. Sci. 2015, 357, 2077–2086. doi: 10.1016/j.apsusc.2015.09.189
  • Feng, J.; Mao, J.; Wen, X.; Tu, M. Ultrasonic-Assisted in Situ Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles. J. Alloys Compd. 2011, 509, 9093–9097. doi: 10.1016/j.jallcom.2011.06.053
  • Massart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn. 1981, 17, 1247–1248. doi: 10.1109/TMAG.1981.1061188
  • Tao, K.; Dou, H.; Sun, K. Interfacial Coprecipitation to Prepare Magnetite Nanoparticles: Concentration and Temperature Dependence. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 15–122. doi: 10.1016/j.colsurfa.2008.01.051
  • Iwasaki, T.; Kosaka, K.; Yabuuchi, T.; Watano, S.; Yanagida, T.; Kawai, T. Novel Mechanochemical Process for Synthesis of Magnetite Nanoparticles Using Coprecipitation Method. Adv. Powder Technol. 2009, 20, 521–528. doi: 10.1016/j.apt.2009.06.002
  • Valenzuela, R.; Fuentes, M.C.; Parra, C.; Baeza, J.; Duran, N.; Sharma, S.K.; Knobel, M.; Freer, J. Influence of Stirring Velocity on the Synthesis of Magnetite Nanoparticles (Fe3O4) by the Coprecipitation Method. J. Alloys Compd. 2009, 488, 227–231. doi: 10.1016/j.jallcom.2009.08.087
  • Ahmadi, S.; Chia, C.-H.; Zakaria, S.; Saeedfar, K.; Asim, N. Synthesis of Fe3O4 Nanocrystals Using Hydrothermal Approach. J. Magn. Magn. Mater. 2012, 324, 4147–4150. doi: 10.1016/j.jmmm.2012.07.023
  • Gao, G.H.; Shi, R.R.; Qin, W.Q.; Shi, Y.G.; Xu, G.F.; Qiu, G.Z.; Liu, X.H. Solvothermal Synthesis and Characterization of Size-Controlled Monodisperse Fe3O4 Nanopartilces. J. Mater. Sci. 2010, 45, 3483–3489. doi: 10.1007/s10853-010-4378-7
  • Raja, K.; Verma, S.; Karmakar, S.; Kar, S.; Jerome Das, S.; Bartwal, K.S. Synthesis and Characterization of Magnetite Nanocrystals. Cryst. Res. Technol. 2011, 46, 497–500. doi: 10.1002/crat.201100105
  • Itoh, H.; Sugimoto, T. Systematic Control of Size, Shape, Structure, and Magnetic Properties of Uniform Magnetite and Maghemite Particles. J. Colloid Interface Sci. 2003, 265, 283–295. doi: 10.1016/S0021-9797(03)00511-3
  • Ang, B.C.; Iskandar, I.Y. Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles via w/o Microemulsion and Massart’s Procedure. J. Mater. Process. Technol. 2007, 191, 235–237. doi: 10.1016/j.jmatprotec.2007.03.011
  • Zhou, Z.H.; Wang, J.; Liu, X. Synthesis of Fe3O4 Nanoparticles from Emulsions.J. Mater. Chem. 2001, 11, 1704–1709. doi: 10.1039/b100758k
  • Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. doi: 10.1016/j.addr.2010.05.006
  • Hong, R.Y.; Pan, T.T.; Li, H.Z. Microwave Synthesis of Magnetic Fe3O4 Nanoparticles Used as a precursor of Nanocomposites and Ferrofluids. J. Magn. Magn. Mater. 2006, 303, 60–68. doi: 10.1016/j.jmmm.2005.10.230
  • Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C.N.; Markovich, G. Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Comparison with Fatty Acids. Langmuir 2001, 17, 7907–7911. doi: 10.1021/la010703+
  • Zaitsev, V.S.; Filimonov, D.S.; Presnyakov, I.A.; Gambino, R.J.; Chu, B. Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and their Colloidal Dispersions. J. Colloid Interface Sci. 1999, 212, 49–57. doi: 10.1006/jcis.1998.5993
  • Kang, Y.S.; Risbud, S.; Rabolt, J.F.; Stroeve, P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chem. Mater. 1996, 8, 2209–2211. doi: 10.1021/cm960157j
  • Wurm, F.; Frey, H. Linear–dendritic Block Copolymers: The State of the art and Exciting Perspectives. Prog. Polym. Sci. 2011, 36, 1–52. doi: 10.1016/j.progpolymsci.2010.07.009
  • Adeli, M.; Zarnegar, Z.; Dadkhah, A.; Hossieni, R.; Salimi, F.; Kanani, A. Linear-dendritic ABA Triblock Copolymers as Nanocarriers. J. Appl. Polym. Sci. 2007, 104, 267–272. doi: 10.1002/app.25583
  • Namazi, H.; Adeli, M. Novel Linear–globular Thermoreversible Hydrogel ABA Type Copolymers from Dendritic Citric Acid as the A Blocks and Poly(Ethyleneglycol) as the B Block. Eur. Polym. J. 2003, 39, 1491–1500. doi: 10.1016/S0014-3057(02)00385-3
  • Tavakoli Naeini, A.; Adeli, M.; Vossoughi, M. Poly(Citric Acid)-Block-Poly(Ethylene Glycol) Copolymers—New Biocompatible Hybrid Materials for Nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 556–562. doi: 10.1016/j.nano.2009.11.008
  • Pardoe, H.; Chua-Anusorn, W.; St. Pierre, T.G.; Dobson, J. Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Synthesized in the Presence of Dextran or Polyvinyl Alcohol. J. Magn. Magn. Mater. 2001, 225, 41–46. doi: 10.1016/S0304-8853(00)01226-9
  • Mendenhall, G.D.; Geng, Y.; Hwang, J. Optimization of Long-Term Stability of Magnetic Fluids from Magnetite and Synthetic Polyelectrolytes. J. Colloid Interface Sci. 1996, 184, 519–526. doi: 10.1006/jcis.1996.0647
  • Lee, J.; Isobe, T.; Senna, M. Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J. Colloid Interface Sci. 1996, 177, 490–494. doi: 10.1006/jcis.1996.0062
  • Ding, X.B.; Sun, Z.H.; Wan, G.X.; Jiang, Y.Y. Preparation of Thermosensitive Magnetic Particles by Dispersion Polymerization. React. Funct. Polym. 1998, 38, 11–15. doi: 10.1016/S1381-5148(97)00154-5