2,068
Views
14
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

A mild and efficient Dakin reaction mediated by lipase

, , , , , , & show all
Pages 269-273 | Received 30 May 2017, Accepted 30 Aug 2017, Published online: 15 Sep 2017

References

  • Bornscheuer, U.T.; Kazlauskas, R.J. Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to form New Bonds and Follow New Pathways. Angew. Chem. Int. Ed. 2004, 43, 6032–6040. doi: 10.1002/anie.200460416
  • Devamani, T.; Rauwerdink, A.M.; Lunzer, M.; Jones, B.J.; Mooney, J.L.; Tan, M.A.O.; Zhang, Z.J.; Xu, J.H.; Dean, A.M.; Kazlauskas, R.J. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases. J. Am. Chem. Soc. 2016, 138, 1046–1056. doi: 10.1021/jacs.5b12209
  • Li, C.; Feng, X.W.; Wang, N.; Zhou, Y.J.; Yu, X.Q. Biocatalytic Promiscuity: The First Lipase-catalysed Asymmetric Aldol Reaction. Green Chem. 2008, 10, 616–618. doi: 10.1039/b803406k
  • Reetz, M.T.; Mondière, R.; Carballeira, J.D. Enzyme Promiscuity: First Protein-catalyzed Morita-baylis-hillman Reaction. Tetrahedron Lett. 2007, 48, 1679–1681. doi: 10.1016/j.tetlet.2007.01.063
  • Li, K.; He, T.; Li, C.; Feng, X.W.; Wang, N.; Yu, X.Q. Lipase-catalysed Direct Mannich Reaction in Water: Utilization of Biocatalytic Promiscuity for C-C Bond Formation in A “One-pot” Synthesis. Green Chem. 2009, 11, 777–779. doi: 10.1039/b817524a
  • Wang, J.L.; Li, X.; Xie, H.Y.; Liu, B.K.; Lin, X.F. Hydrolase-Catalyzed Fast Henry Reaction of Nitroalkanes and Aldehydes in Organic Media. J. Biotechnol. 2010, 145, 240–243. doi: 10.1016/j.jbiotec.2009.11.022
  • Du, L.H.; Cheng, B.Z.; Yang, W.J.; Xu, L.L.; Luo, X.P. Markovnikov Addition of Imidazole Derivatives with Vinyl esters Catalyzed by Lipase TL IM from Thermomyces lanuginosus/K2CO3 in A Continuous-flow Microreactor. RSC Adv. 2016, 6, 59100–59103. doi: 10.1039/C6RA05983J
  • Svedendahl, M.; Hult, K.; Berglund, P. Fast Carbon-Carbon Bond Formation by a Promiscuous Lipase. J. Am. Chem. Soc. 2005, 127, 17988–17989. doi: 10.1021/ja056660r
  • Wang, J.L.; Liu, B.K.; Yin, C.; Wu, Q.; Lin, X.F. Candida antarctica Lipase B-catalyzed the Unprecedented Three-Component Hantzsch-Type Reaction of Aldehyde with Acetamide and 1, 3-Dicarbonyl Compounds in Non-aqueous Solvent. Tetrahedron 2011, 67, 2689–2692. doi: 10.1016/j.tet.2011.01.045
  • Yin, D.L.T.; Kazlauskas, R.J. Revised Molecular Basis of the Promiscuous Carboxylic Acid Perhydrolase Activity in Serine Hydrolases. Chem. Eur. J. 2012, 18, 8130–8139. doi: 10.1002/chem.201200052
  • Yin, D.L.T.; Bernhardt, P.; Morley, K.L.; Jiang, Y.; Cheeseman, J.D.; Purpero, V.; Schrag, J.D.; Kazlauskas, R.J. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas Fluorescens Esterase. Biochemistry 2010, 49, 1931–1942. doi: 10.1021/bi9021268
  • Bernhardt, P.; Hult, K.; Kazlauskas, R.J. Molecular Basis of Perhydrolase Activity in Serine Hydrolases. Angew. Chem. 2005, 117, 2802–2806. doi: 10.1002/ange.200463006
  • Xu, Y.; Khaw, N.R.B.J.; Li, Z. Efficient Epoxidation of Alkenes with Hydrogen Peroxide, Lactone, and Lipase. Green Chem. 2009, 11, 2047–2051. doi: 10.1039/b913077b
  • Kotlewska, A.J.; van Rantwijk, F.; Sheldon, R.A.; Arends, I.W.C.E. Epoxidation and Baeyer-Villiger Oxidation Using Hydrogen Peroxide and A Lipase Dissolved in Ionic Liquids. Green Chem. 2011, 13, 2154–2160. doi: 10.1039/c1gc15255f
  • Yang, F.J.; Wang, Z.; Zhang, X.W.; Jiang, L.Y.; Li, Y.Z.; Wang, L. A Green Chemoenzymatic Process for the Synthesis of Azoxybenzenes. Chemcatchem 2015, 7, 3450–3453. doi: 10.1002/cctc.201500720
  • Yang, F.J.; Zhang, X.W.; Li, F.X.; Wang, Z.; Wang, L. Chemoenzymatic Synthesis of Α-Cyano Epoxides by A Tandem-Knoevenagel-Epoxidation Reaction. Eur. J. Org. Chem. 2016, 7, 1251–1254.
  • Yang, F.J.; Zhang, X.W.; Li, F.X.; Wang, Z.; Wang, L. A Lipase-Glucose Oxidase System for the Efficient Oxidation of N-Heteroaromatic Compounds and Tertiary Amines. Green Chem. 2016, 18, 3518–3521. doi: 10.1039/C6GC00780E
  • Bjǒrkling, F.; Frykman, H.; Godtfredsen, S.E.; Kirk, O. Lipase Catalyzed Synthesis of Peroxycarboxylic Acids and Lipase Mediated Oxidations. Tetrahedron 1992, 48, 4587–4592. doi: 10.1016/S0040-4020(01)81232-1
  • Wang, Z.D.Z. Comprehensive Organic Name Reactions and Reagents, John Wiley: Hoboken, NJ, USA, 2009.
  • Chen, S.; Hossain, M.S.; Foss, Jr.F.W. Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Org. Lett. 2012, 14, 2806–2809. doi: 10.1021/ol3010326
  • Varma, R.S.; Naicker, K.P. The Urea−Hydrogen Peroxide Complex: Solid-State Oxidative Protocols for Hydroxylated Aldehydes and Ketones (Dakin Reaction), Nitriles, Sulfides, and Nitrogen Heterocycles. Org. Lett. 1999, 1, 189–192. doi: 10.1021/ol990522n
  • Silva, E.T.; Camara, C.A.; Antunes, O.A.C.; Barreiro, E.J.; Fraga, C.A.M. Improved Solvent-free Dakin Oxidation Protocol. Synth. Commun. 2008, 38, 784–788. doi: 10.1080/00397910701820673
  • Zambrano, J.L.; Dorta, R. Improving the Dakin Reaction by Using an Ionic Liquid Solvent. Synlett 2003, 10, 1545–1546. doi: 10.1055/s-2003-40848
  • ChandraáBarua, N. H2O2 in WEB: A Highly Efficient Catalyst System for the Dakin Reaction. Green Chem. 2015, 17, 4533–4536. doi: 10.1039/C5GC01404B
  • Saikia, B.; Borah, P. A New Avenue to the Dakin reaction in H2O2-WERSA. RSC Adv. 2015, 5, 105583–105586. doi: 10.1039/C5RA20133K
  • Rueda, N.; Santos, J.C.S.; Ortiz, C.; Torres, R.; Barbosa, O.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chem. Rec. 2016, 16, 1436–1455. doi: 10.1002/tcr.201600007
  • Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. doi: 10.1039/C2CS35231A
  • Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the One-step Immobilization-Purification of Enzymes as Industrial Biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. doi: 10.1016/j.biotechadv.2015.03.006