20,545
Views
48
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

The green Knoevenagel condensation: solvent-free condensation of benzaldehydes

ORCID Icon, , &
Pages 404-411 | Received 24 Jul 2017, Accepted 10 Oct 2017, Published online: 27 Oct 2017

References

  • List, B. Emil Knoevenagel and the Roots of Aminocatalysis. Angew. Chem. (Int. ed. in English). 2010, 49, 1730–1734. doi: 10.1002/anie.200906900
  • Cho, H.; Ueda, M.; Tamaoka, M.; Hamaguchi, M.; Aisaka, K.; Kiso, Y.; Inoue, T.; Ogino, R.; Tatsuoka, T.; Ishihara, T. Novel Caffeic Acid Derivatives: Extremely Potent Inhibitors of 12-Lipoxygenase. J. Med. Chem. 1991, 34, 1503–1505. doi: 10.1021/jm00108a039
  • Kwak, G.; Fujiki, M. Colored and Luminous Aliphatic Polyester via One-Pot Intra- and Intermolecular Knoevenagel Reactions. Macromolecules . 2004, 37, 2021–2025. doi: 10.1021/ma035679g
  • Nokami, J.; Kataoka, K.; Shiraishi, K.; Osafune, M.; Hussain, I.; Sumida, S. Convenient Formation of 4-Hydroxyalk-2-en-1-One Functionality Via A Knoevenagel-Type Carbon Chain Elongation Reaction of Aldehyde With 1-Arylsulfinylalkan-2-One. J. Org. Chem. 2001, 66, 1228–1232. doi: 10.1021/jo001323g
  • De, P.; Koumba Yoya, G.; Constant, P.; Bedos-Belval, F.; Duran, H.; Saffon, N.; Daffé, M.; Baltas, M. Design, Synthesis, and Biological Evaluation of New Cinnamic Derivatives as Antituberculosis Agents. J. Med. Chem. 2011, 54, 1449–1461. doi: 10.1021/jm101510d
  • Knoevenagel, E. Ueber eine Darstellungsweise der Glutarsäure. Berichte der deutschen chemischen Gesellschaft 1894, 27, 2345–2346. doi: 10.1002/cber.189402702229
  • Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; et al . Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10, 31–36. doi: 10.1039/B711717E
  • Kerton, F.; Marriott, R.; Clark, J.H.; Seidl, P.; Clark, J.H. Alternative Solvents for Green Chemistry; Green Chemistry Series;Royal Society of Chemistry: Cambridge, 2013.
  • Pawar, H.S.; Wagh, A.S.; Lali, A.M. Triethylamine: A Potential N-Base Surrogate for Pyridine in Knoevenagel Condensation of Aromatic Aldehydes and Malonic Acid. New J. Chem. 2016, 40, 4962–4968. doi: 10.1039/C5NJ03125G
  • Ranu, B.C.; Jana, R. Ionic Liquid as Catalyst and Reaction Medium – A Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task-Specific Basic Ionic Liquid. Eur. J. Org. Chem. 2006, 2006, 3767–3770. doi: 10.1002/ejoc.200600335
  • Hangarge, R.V.; Jarikote, D.V.; Shingare, M.S. Knoevenagel Condensation Reactions in an Ionic Liquid. Green Chem. 2002, 4, 266–268. doi: 10.1039/b111634g
  • Kaupp, G.; Reza Naimi-Jamal, M.; Schmeyers, J. Solvent-Free Knoevenagel Condensations and Michael Additions in the Solid State and in the Melt with Quantitative Yield. Tetrahedron. 2003, 59, 3753–3760. doi: 10.1016/S0040-4020(03)00554-4
  • Pinxterhuis, E.B.; Giannerini, M.; Hornillos, V.; Feringa, B.L. Fast, Greener and Scalable Direct Coupling of Organolithium Compounds with No Additional Solvents. Nat. Commun. 2016, 7, 11698. doi: 10.1038/ncomms11698
  • Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-Free Heterocyclic Synthesis. Chem. Rev. 2009, 109, 4140–4182. doi: 10.1021/cr9001098
  • Jawor, M.L.; Ahmed, B.M.; Mezei, G. Solvent- and Catalyst-Free, Quantitative Protection of Hydroxyl, Thiol, Carboxylic Acid, Amide and Heterocyclic Amino Functional Groups. Green Chem. 2016, 18, 6209–6214. doi: 10.1039/C6GC02562E
  • Lu, J.; Toy, P. Organocatalytic Decarboxylative Doebner-Knoevenagel Reactions Between Arylaldehydes and Monoethyl Malonate Mediated by a Bifunctional Polymeric Catalyst. Synlett. 2011, 2011, 1723–1726. doi: 10.1055/s-0030-1260808
  • Kasinathan, P.; Seo, Y.; Shim, K.; Hwang, Y.; Lee, U.; Hwang, D.; Hong, D.; Halligudi, S.B.; Chang, J. Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation. Bull. Korean Chem. Soc. 2011, 32, 2073–2075. doi: 10.5012/bkcs.2011.32.6.2073
  • Gu, X.; Tang, Y.; Zhang, X.; Luo, Z.; Lu, H. Organocatalytic Knoevenagel Condensation by Chiral C2-Symmetric Tertiary Diamines. New J. Chem. 2016, 40, 6580–6583. doi: 10.1039/C6NJ00613B
  • Hoskins, T.J.C. Carbon-Carbon Bond Forming Reactions of Biomass Derived Aldehydes, Georgia Institute of Technology: Atlanta, 2008.
  • Pasha, M.A.; Manjula, K. Lithium Hydroxide: A Simple and an Efficient Catalyst for Knoevenagel Condensation Under Solvent-Free Grindstone Method. J. Saudi Chem. Soc. 2011, 15, 283–286. doi: 10.1016/j.jscs.2010.10.010
  • Leelavathi, P.; Kumar, SR. Niobium (V) Chloride Catalyzed Knoevenagel Condensation: An Efficient Protocol for the Preparation of Electrophilic Alkenes. J. Mol. Catal. A Chem. 2005, 240, 99–102.
  • Ogiwara, Y.; Takahashi, K.; Kitazawa, T.; Sakai, N. Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter. J. Org. Chem. 2015, 80, 3101–3110. doi: 10.1021/acs.joc.5b00011
  • Jackson, T.; Clark, J.H.; Macquarrie, D.J.; Brophy, J.H. Base Catalysts Immobilised on Silica Coated Reactor Walls for Use in Continuous Flow Systems. Green Chem. 2004, 6, 193–195. doi: 10.1039/b315764b
  • Nageswara Rao, R.; Kumar Talluri, M.V.N. An Overview of Recent Applications of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in Determination of Inorganic Impurities in Drugs and Pharmaceuticals. J. Pharmaceut. Biomed. 2007, 43, 1–13. doi: 10.1016/j.jpba.2006.07.004
  • Gupta, M.; Wakhloo, B.P. Tetrabutylammoniumbromide Mediated Knoevenagel Condensation in Water: Synthesis of Cinnamic Acids. Arkivoc. 2007, 2007, 94.
  • Bhuiyan, M.M.H.; Hossain, M.I.; Ashraful Alam, M.; Mahmud, M.M. Microwave Assisted Knoevenagel Condensation: Synthesis and Antimicrobial Activities of Some Arylidene-malononitriles, 02.
  • Moseley, J.D.; Kappe, CO. A Critical Assessment of the Greenness and Energy Efficiency of Microwave-Assisted Organic Synthesis. Green Chem. 2011, 13, 794. doi: 10.1039/c0gc00823k
  • Trotzki, R.; Hoffmann, M.M.; Ondruschka, B. Studies on the Solvent-Free and Waste-Free Knoevenagel Condensation. Green Chem. 2008, 1, 767–772. doi: 10.1039/b801661e
  • Mase, N.; Horibe, T. Organocatalytic Knoevenagel Condensations by Means of Carbamic Acid Ammonium Salts. Org. Lett. 2013, 15, 1854–1857. doi: 10.1021/ol400462d
  • van Schijndel, J.; Canalle, L.A.; Smid, J.; Meuldijk, J. Conversion of Syringaldehyde to Sinapinic Acid through Knoevenagel-Doebner Condensation. Open J. Phys. Chem. 2016, 6, 101–108. doi: 10.4236/ojpc.2016.64010
  • Aldabalde, V. Organocatalyzed Decarboxylation of Naturally Occurring Cinnamic Acids: Potential Role in Flavoring Chemicals Production. Open J. Phys. Chem. 2011, 1, 85–93. doi: 10.4236/ojpc.2011.13012