1,877
Views
6
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Efficient synthesis of vitamin A palmitate in nonaqueous medium using self-assembled lipase TLL@apatite hybrid nanoflowers by mimetic biomineralization

, , , , , , & show all
Pages 476-483 | Received 28 May 2018, Accepted 06 Sep 2018, Published online: 24 Oct 2018

References

  • Saeterdal, I.; Mora, J.O.; De-Regil, L.M. Fortification of Staple Foods with Vitamin A for Preventing Vitamin A Deficiency. Cochrane Database Syst Rev 2012. Art. No.: CD010068. doi:10.1002/14651858.CD010068.
  • Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A Supplementation for Preventing Morbidity and Mortality in Children From Six Months to Five Years of Age. Cochrane Database Syst Rev 2017, 3. Art. No.: CD008524. doi:10.1002/14651858.CD008524.pub3.
  • Singer, J.R.; Bakall, B.; Gordon, G.M.; Reddy, R.K. Treatment of Vitamin A Deficiency Retinopathy with Sublingual Vitamin A Palmitate. Doc Ophthalmol 2016, 132, 137–45. doi: 10.1007/s10633-016-9533-2
  • Cui, X.; Xiang, J.; Zhu, W.; Wei, A.; Le, Q.; Xu, J.; Zhou, X. Vitamin A Palmitate and Carbomer Gel Protects the Conjunctiva of Patients With Long-Term Prostaglandin Analogs Application. J Glaucoma 2016, 25, 487–92. doi: 10.1097/IJG.0000000000000316
  • Penkert, R.R.; Iverson, A.; Rosch, J.W.; Hurwitz, J.L. Prevnar-13 Vaccine Failure in a Mouse Model for Vitamin A Deficiency. Vaccine 2017, 35, 6264–6268. doi: 10.1016/j.vaccine.2017.09.069
  • Loveday, S.M.; Singh, H. Recent Advances in Technologies for Vitamin A Protection in Foods. Trends Food Sci. Technol 2008, 19, 657–668. doi: 10.1016/j.tifs.2008.08.002
  • Moccand, C.; Martin, F.; Martiel, I.; Gancel, C.; Michel, M.; Fries, L.; Sagalowicz, L. Vitamin A Degradation in Triglycerides Varying by Their Saturation Levels. Food Res Int 2016, 88, 3–9. doi: 10.1016/j.foodres.2016.06.001
  • Zhao, H.X.; Cui, F.J.; Li, Y.H.; Sun, W.J.; Zhou, Q.; Yu, S.L.; Dong, Y.; Zong, L.; Huang, H. Research Progress of Vitamin Esters Derivatives Synthesis. China Food Addit. 2013, 6, 176–183.
  • Liu, T.; Yin, C.H.; Tan, T.W. Lipase Catalyzed Synthesis of Vitamin A Esters. Mod. Chem. Ind 2005, 25, 37–40.
  • Muthusamy, K.; Sridharan, V.; Maheswari, C.U.; Nagarajan, S. Lipase Catalyzed Synthesis of Fluorescent Glycolipids: Gelation Studies and Graphene Incorporated Self-Assembled Sheet Formation for Semiconductor Applications. Green Chem 2016, 18, 3722–3731. doi: 10.1039/C6GC00347H
  • Dwivedee, B.P.; Ghosh, S.; Bhaumik, J.; Banoth, L.; Chand Banerjee, U. Lipase-catalyzed Green Synthesis of Enantiopure Atenolol. RSC Adv 2015, 5, 15850–15860. doi: 10.1039/C4RA16365F
  • Banerjee, R.; Proshlyakov, Y.; Lipscomb, J.D.; Proshlyakov, D.A. Structure of the Key Species in the Enzymatic Oxidation of Methane to Methanol. Nature 2015, 518, 431–4. doi: 10.1038/nature14160
  • Zheng, L.; Xie, X.; Wang, Z.; Zhang, Y.; Wang, L.; Cui, X.; Huang, H.; Zhuang, H. Fabrication of a Nano-Biocatalyst for Regioselective Acylation of Arbutin. Green Chem. Lett. Rev 2018, 11, 55–61. doi: 10.1080/17518253.2018.1437226
  • Yao, C.; Lin, W.; Yue, K.; Ling, X.; Jing, K.; Lu, Y.; Tang, S.; Fan, E. Biocatalytic Synthesis of Vitamin A Palmitate Using Immobilized Lipase Produced by Recombinant Pichia Pastoris. Eng. Life Sci 2017, 17, 768–774. doi: 10.1002/elsc.201600178
  • Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the one-Step Immobilization-Purification of Enzymes as Industrial Biocatalysts. Biotechnol. Adv 2015, 33, 435–456. doi: 10.1016/j.biotechadv.2015.03.006
  • Chen, L.Y.; Luque, R.; Li, Y.W. Controllable Design of Tunable Nanostructures Inside Metal-Organic Frameworks. Chem. Soc. Rev 2017, 46, 4614–4630. doi: 10.1039/C6CS00537C
  • Lian, X.Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (Metal-Organic Framework) Composites. Chem Soc Rev 2017, 46, 3386–3401. doi: 10.1039/C7CS00058H
  • Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem Soc Rev 2013, 42, 6223–6235. doi: 10.1039/C3CS60075K
  • Massaro, M.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Covalently Modified Halloysite Clay Nanotubes: Synthesis, Properties, Biological and Medical Applications. J Mater Chem B 2017, 5, 2867–2882. doi: 10.1039/C7TB00316A
  • Song, G.S.; Chen, Y.Y.; Liang, C.; Yi, X.; Liu, J.J.; Sun, X.Q.; Shen, S.D.; Yang, K.; Liu, Z. Catalase-Loaded TaOx Nanoshells as Bio-Nanoreactors Combining High-Z Element and Enzyme Delivery for Enhancing Radiotherapy. Adv. Mater 2016, 28, 7143–7148. doi: 10.1002/adma.201602111
  • Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Enzyme Immobilization. Biomacromolecules 2016, 17, 615–621. doi: 10.1021/acs.biomac.5b01542
  • Van Langen, L.M.; Janssen, M.H.; Oosthoek, N.H.; Pereira, S.R.; Svedas, V.K.; van Rantwijk, F.; Sheldon, R.A. Active Site Titration as a Tool for the Evaluation of Immobilization Procedures of Penicillin Acylase. Biotechnol Bioeng 2002, 79, 224–228. doi: 10.1002/bit.10280
  • Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic Hybrid Nanoflowers. Nat Nanotechnol 2012, 7, 428–32. doi: 10.1038/nnano.2012.80
  • Kumar, P.; Kim, K.-H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the Sensing Techniques for Heavy Metal Ions Using Nanomaterials. J Ind Eng Chem 2017, 54, 30–43. doi: 10.1016/j.jiec.2017.06.010
  • Liu, S.J.; Guo, Y.P.; Yang, H.Y.; Wang, S.; Ding, H.; Qi, Y. Synthesis of a Water-Soluble Thiourea-Formaldehyde (WTF) Resin and its Application to Immobilize the Heavy Metal in MSWI fly ash. J Environ Manage 2016, 182, 328–334. doi: 10.1016/j.jenvman.2016.07.086
  • Ke, C.; Fan, Y.; Chen, Y.; Xu, L.; Yan, Y. A New Lipase–Inorganic Hybrid Nanoflower with Enhanced Enzyme Activity. RSC Adv 2016, 6, 19413–19416. doi: 10.1039/C6RA01564F
  • Yu, J.; Wang, C.; Wang, A.; Li, N.; Chen, X.; Pei, X.; Zhang, P.; Wu, S.G. Dual-cycle Immobilization to Reuse Both Enzyme and Support by Reblossoming Enzyme–Inorganic Hybrid Nanoflowers. RSC Adv 2018, 8, 16088–16094. doi: 10.1039/C8RA02051E
  • Nudelman, F.; Sommerdijk, N.A. Biomineralization as an Inspiration for Materials Chemistry. Angew Chem, Int Ed Engl 2012, 51, 6582–96. doi: 10.1002/anie.201106715
  • Ma, J.; Wang, J.; Ai, X.; Zhang, S. Biomimetic Self-Assembly of Apatite Hybrid Materials: From a Single Molecular Template to bi-/Multi-Molecular Templates. Biotechnol Adv 2014, 32, 744–760. doi: 10.1016/j.biotechadv.2013.10.014
  • Li, C.; Born, A.-K.; Schweizer, T.; Zenobi-Wong, M.; Cerruti, M.; Mezzenga, R. Amyloid-Hydroxyapatite Bone Biomimetic Composites. Adv.Mater 2014, 26, 3207–3212. doi: 10.1002/adma.201306198
  • Dey, A.; Bomans, P.H.H.; Müller, F.A.; Will, J.; Frederik, P.M.; de With, G.; Sommerdijk, N.A.J.M. The Role of Prenucleation Clusters in Surface-Induced Calcium Phosphate Crystallization. Nat. Mater 2010, 9, 1010–1014. doi: 10.1038/nmat2900
  • Hatanaka, T.; Matsugami, A.; Nonaka, T.; Takagi, H.; Hayashi, F.; Tani, T.; Ishida, N. Rationally Designed Mineralization for Selective Recovery of the Rare Earth Elements. Nat Commun 2017, 8, 15670. doi: 10.1038/ncomms15670
  • Wang, Y.; Azaïs, T.; Robin, M.; Vallée, A.; Catania, C.; Legriel, P.; Pehau-Arnaudet, G.; Babonneau, F.; Giraud-Guille, M.-M.; Nassif, N. The Predominant Role of Collagen in the Nucleation, Growth, Structure and Orientation of Bone Apatite. Nat. Mater 2012, 11, 724–733. doi: 10.1038/nmat3362
  • Smeets, P.J.M.; Cho, K.R.; Kempen, R.G.E.; Sommerdijk, N.A.J.M.; De Yoreo, J.J. Calcium Carbonate Nucleation Driven by Ion Binding in a Biomimetic Matrix Revealed by in Situ Electron Microscopy. Nat. Mater 2015, 14, 394–399. doi: 10.1038/nmat4193
  • Xiao, Z.; Que, K.; Wang, H.; An, R.; Chen, Z.; Qiu, Z.; Lin, M.; Song, J.; Yang, J.; Lu, D.; Shen, M.; Guan, B.; Wang, Y.; Deng, X.; Yang, X.; Cai, Q.; Deng, J.; Ma, L.; Zhang, X.; Zhang, X. Rapid Biomimetic Remineralization of the Demineralized Enamel Surface Using Nano-Particles of Amorphous Calcium Phosphate Guided by Chimaeric Peptides. Dent Mater 2017, 33, 1217–1228. doi: 10.1016/j.dental.2017.07.015
  • Wu, L.N.; Genge, B.R.; Wuthier, R.E. Analysis and Molecular Modeling of the Formation, Structure, and Activity of the Phosphatidylserine-Calcium-Phosphate Complex Associated with Biomineralization. J Biol Chem 2008, 283, 3827–38. doi: 10.1074/jbc.M707653200
  • Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y.S. The Role of Confined Collagen Geometry in Decreasing Nucleation Energy Barriers to Intrafibrillar Mineralization. Nat Commun 2018, 9, 962. doi: 10.1038/s41467-018-03041-1
  • Klibanov, A.M. Improving Enzymes by Using Them in Organic Solvents. Nature 2001, 409, 241–246. doi: 10.1038/35051719
  • Wang, Q.G.; Gao, Q.M.; Shi, J.L. Enhanced Catalytic Activity of Hemoglobin in Organic Solvents by Layered Titanate Immobilization. J Am Chem Soc 2004, 126, 14346–14347. doi: 10.1021/ja047224s
  • Bindhu, L.V.; Abraham, T.E. Preparation and Kinetic Studies of Surfactant-Horseradish Peroxidase Ion Paired Complex in Organic Media. Biochem Eng J 2003, 15, 47–57. doi: 10.1016/S1369-703X(02)00173-0
  • Ellis, R.J.; Minton, A.P. Cell Biology-Join the Crowd. Nature 2003, 425, 27–28. doi: 10.1038/425027a
  • Cheung, M.S.; Thirumalai, D. Nanopore-Protein Interactions Dramatically Alter Stability and Yield of the Native State in Restricted Spaces. J. Mol. Biol 2006, 357, 632–643. doi: 10.1016/j.jmb.2005.12.048
  • Wang, X.Q.; Lu, D.N.; Austin, R.; Agarwal, A.; Mueller, L.J.; Liu, Z.; Wu, J.Z.; Feng, P.Y. Protein Refolding Assisted by Periodic Mesoporous Organosilicas. Langmuir 2007, 23, 5735–5739. doi: 10.1021/la063507h
  • Du, F.; Zhou, Z.; Mo, Z.Y.; Shi, J.Z.; Chen, J.; Liang, Y. Mixed Macromolecular Crowding Accelerates the Refolding of Rabbit Muscle Creatine Kinase: Implications for Protein Folding in Physiological Environments. J. Mol. Biol 2006, 364, 469–482. doi: 10.1016/j.jmb.2006.09.018
  • Jiang, M.; Guo, Z.H. Effects of Macromolecular Crowding on the Intrinsic Catalytic Efficiency and Structure of Enterobactin-Specific Isochorismate Synthase. J. Am. Chem. Soc 2007, 129, 730–731. doi: 10.1021/ja065064+
  • Moran-Zorzano, M.T.; Viale, A.; Munoz, F.; Alonso-Casajus, N.; Eydallin, G.; Zugasti, B.; Baroja-Fernandez, E.; Pozueta-Romero, J. Escherichia Coli AspP Activity is Enhanced by Macromolecular Crowding and by Both Glucose-1,6-Bisphosphate and Nucleotide-Sugars. FEBS Lett 2007, 581, 1035–1040. doi: 10.1016/j.febslet.2007.02.004
  • Liu, Y.; Ni, H.; Cai, H.; Xiao, A.; Su, W. Study on Reaction Conditions for Immobilized Lipase Synthesizing Retinol Palmitate by Transesterification. J. Chin. Inst. Food Sci. Technol. 2012, 12, 75–83.